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Abstract

We show that UMDA transforms the dis-
crete optimization problem f(z) into a con-
tinuous one defined by the average fitness
W (p). For proportionate selection, UMDA
performs gradient ascent in this landscape.
For functions with highly correlated variables
UMDA has to be extended to an algorithm
FDA which uses more complex search distri-
butions. FDA also transforms the discrete
optimization problem into a continuous one
defined by W (p), where W(p) now depends
on the factorization. The difference between
UMDA and FDA are discussed for a decep-
tive function.
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1 Univariate Marginal Distribution
Algorithm

Let x = (x1,... ,z,) denote a binary vector. We con-
sider the optimization problem x,,; = argmax f(x).

Let p(x,t) denote the probability of x in a popula-
tion of vectors at generation t. We denote by X; vari-
able names, whereas x; is used for assignments. So
p(X1=2x1) is the marginal probability of the first vari-
able having value x; and will be abbreviated to p(z1)
if the context allows. p(z;|z;) := p(X;=z;| X =x;) =
p(xi,x;)/p(z;) denotes the conditional probability.

We have shown that genetic algorithms using random-
ized recombination/crossover can be approximated by
an algorithm that keeps the population in linkage equi-
librium [2]. This can be done by computing the uni-
variate marginal frequencies from the selected points.
This method is used by the Univariate Marginal Dis-
tribution Algorithm (UMDA).

UMDA formally needs 2n parameters, the marginal
distributions p(z;). We consider the average fitness
f@) :== 3>, f(z)p(z) as a function which depends on
p(z;). To emphasize this dependency we write

W (p(X1=0),p(X1=1),... ,p(Xn=1)) = f(t) (1)

We abbreviate p; := p(X;=1). If we insert 1 — p;
for p(X;=0) into W, we obtain W. W depends on n
parameters.

Theorem 1. [}] For infinite populations and propor-
tionate selection the difference equations for the gene
frequencies used by UMDA are given by
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pi(t +1) = pi(t) +pi(t)(1 — pi(t)) ) (2)

The above equation completely describes the dynamics
of UMDA with proportionate selection. Mathemati-
cally UMDA performs gradient ascent in the landscape
defined by W.

2 Factorized Distribution Algorithm

When the fitness function has highly correlated vari-
ables, UMDA may not be able to optimize it [6]. In
this case an algorithm that uses more complex prob-
ability distributions is needed. The FDA (Factorized
Distribution Algorithm) [5] uses the theory of Bayesian
networks to sample points with arbitrary factorized
distributions. It has been intensively discussed in [3].

The probability distribution implied by a Bayesian

network is given by p(x) = [, p(z;|m;) where m; are

the parents of the node in the graph. For convenience
we assume that 7; € {0,r; — 1} with r; := 2lmil,

The average fitness is then

n

W({p(Xi=zi|lli=m}) = > fx) [[ plwilm) (3)
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The parameters of W are again not independent, as
p(X;=0|m;) =1 — p(X;=1|m;). Therefore we define

W({p(X _1|Hz—7rz}) = (4)
> fx Hp
We abbreviate these parameters to p(X;|m) :=

p(X;=1|Il;=m7;). From equation (4) we can calculate
the partial derivatives of W and get

i=1|m)" (1 — p(X;=1|m;))' ~*
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FDA moves on the landscape defined by W (p). The
theoretical analysis of FDA becomes easy if Boltzmann
selection is used.

Definition. The probability distribution of Boltz-
mann selection is defined as

p(x)er/ (@)
>y p(y)er/W)

If Boltzmann selection pj is applied to a Boltzmann
distribution with inverse temperatur g3, the resulting
distribution is again Boltzmann with 8’ = 8 + . We
have shown in [5] that FDA with Boltzmann selection
converges to the optimum when 8 — oco. In addition
we have that for Boltzmann selection the average fit-
ness never decreases.

(1= p(Xjlm)) = (5)

pi(z) = (6)

Theorem 2. Let pg be a Boltzmann distribution.
Then the average fitness Wpg is increasing:

B>y = Wg>W,.

Proof:
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3 Computing the Average Fitness

In mathematical terms the discrete optimization prob-
lem with variables x is transformed into a continu-
ous optimization problem W(p) with parameters p for
both UMDA and FDA. If the structure of the fitness

function is simple, we can get a simpler expression of
W than equation (4). For convenience we introduce
the following notation with a = (ay,...,a,) and x
binary vectors: x* =1 < Vi:q; < x;.

Lemma 1. When the fitness function is given by

f(x) =22, ayx¥, we have
(x) = Zayxy = z ay and thus (1)
y yCz
@ = (1) f(y) ®)

yCx

The lemma and the following theorem can be proven
with the M&bius inversion [1].

Theorem 3. With the fitness function defined by
f(x) = X2, ayx?, the average fitness W(p) for any

distribution p is
(p) = Zy AyPy 9)

with p, = p(X;=1[i € x), so pr = p(X1=1), p12 =
(Xl—].,XQ— ) etc.

Remark 1: The parameters of W in (9) are different
from the parameters used in (4). But equation (9)
leads to a particularly simple expression when higher
order interactions are missing. For example, a linear
fitness function has all a, = 0 with |z| > 1, |z| :=
>, i, 0 we have W (p) = ap + 3.1, a;p;. Regardless
of the distribution p, the average fitness depends only
on the univariate marginal frequencies!

Remark 2: When the probability distribution factor-
izes, the expression also simplifies. For example, with
the univariate distribution, we have p, = [[;c, pi, so
W (p) is a function of n parameters. We get

Lemma 2. With the definitions of theorem 8, we have
for UMDA

® =3, ar (10)

W (p) := f(t) is an extension of f(zx) to the unit cube
[0,1]". All local mazima of W (p) are at the corners
(pi =0 orp; =1).

Remark: There exist points where the gradient of
W (p) vanishes in the interior. Here UMDA with pro-
portionate selection will stop, as seen from equation
2. These points may even be stable attractors. This
means that UMDA with proportionate selection will
converge to those points. OQur numerical experiments
show that for any kind of selection scheme UMDA has
problems to move away from points where the gradient
is zero.



4 Examples
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Figure 1: Definition of saw with 30 bits
We now discuss a multi modal function whose defini-

tion can be seen from figure 1. The function value
depends only on the sum of bits equal to 1.

8 T T T T
Theory
7F UMDArun  + -
6 4
5 - ~
=
= 4 | -
=
3} 4
2k 4
1+ ~
O 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Average p

Figure 2: Transformed fitness landscape for saw

Figure 2 shows the transformed landscape W (p) to-
gether with an UMDA run. The transformation has
smoothed the landscape to the point that almost all
valleys have disappeared. We expect UMDA to be able
to cross the small valley near the global optimum.

This is confirmed by the UMDA run with proportion-
ate selection. We started the algorithm with an initial
population with only 20% bits set to one, thus making
the problem more difficult. As the theory is for infinite
population size, the population size was set to 3000.
Shown are the average marginal frequencies and the
average fitness of the population (standard deviance
of the marginal frequencies was always < 0.08). Note
that the gathered points remain very close to the theo-
retical curve and that the small valley is easily crossed.

UMDA finds the global optimum for Saw, because the
transformed landscape is easy.

Remark: UMDA can solve many difficult multi-

modal optimization problems. This explains the suc-
cess of genetic algorithms in optimization.

4.1 UMDA and a deceptive function

But there are also optimization problems where
UMDA is mislead. UMDA will converge to local op-
tima, because it does not use correlations between the
variables. We demonstrate this problem by a deceptive
function. We use the definition

E—1-—|x|

Decep(x, k) := { A 0< x| <k

=k Y

We will analyze Decep(x,4). The average fitness with
respect to UMDA is given by

Wpr,...

To simplify analysis, we assume that all p; are equal, as
fitness is symmetric with respect to permutation of the
p;. We get W(p) = 3 —4p + 5p*. The actual function
adds [ distinct Decep(k)-functions for a problem of /- k
bits.

,P1) =3 —p1 — P2 — P3 — P4 + Sp1papapy
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Figure 3: Transformed landscape for Dec-4 (32 bits)

Figure 3 shows this graph together with points gath-
ered from an actual UMDA run (showing average p;)
with proportionate selection for 32 bits. Because the
local minimum of the curve is at p ~ 0.585 > 0.5,
UMDA converges to the local optimum. FDA, on the
other hand, follows a different path which can also be
theoretically approximated by calculating the Boltz-
mann distribution. The match is again very accurate,
although the run uses proportionate selection.

4.2 FDA and the deceptive function

Because all variables interact in the deceptive function,
an exact FDA factorization of Decep(x,4) for FDA
needs 15 parameters. To simplify analysis, we consider
Decep(x,3) only. This problem is a unique case for
UMDA: There is a local minimum of W(p) exactly



at p = 0.5. This means VW (p) = 0. UMDA with
an infinite population and proportionate selection will
remain at p = 0.5. But with a finite population the
algorithm will choose the search direction randomly.
UMDA will find the optimum in a large number of
cases. We add 10 copies of Decep(x, 3) to get a 30-bit
problem.

An exact FDA factorization of one block of 3 vari-
ables is given by p(x) = p(x1|z2, z3)p(z2|z3)p(23).
We will abbreviate the actual parameters of this dis-
tribution as Plab = p(X1=1|X2:a,X3 Zb), Pla =
p(X2=1|X3=a) and p; := p(X3=1).

By sorting according to function values (2,1,0 and 3),
it can easily be seen that W(p) is given by

W (p) = 2(1 — p1oo) (1 — p1o)(1 — p1) +
P1o0(1 = p10)(1 = p1) + (1 = p110)pP1o(1 — p1)
+ (1 = pro1)(1 = p11)p1 + 3pruipuipr (12)

The necessary condition for a local extremum is that
all partial derivatives are 0. A simple analysis shows
that this is not possible, so there is no local extremum
of the transformed fitness landscape for the factorized
distribution. Hence FDA will not get stuck, even if
started near the local maximum.

60 T T T T T T T T T

55 | g

50 |- g

45 .
Hert” -

40 g

3B .

30 - FDA run —+— o

25 L L L L L L L L L
0O 01 02 03 04 05 06 07 08 09 1

Average p

Figure 4: FDA run for Deceptive-3 (60 bits)

Experiments confirm this result. Figure 4 shows sev-
eral FDA runs for a problem with 60 bits (popsize
1000) where the initial population had from 5% to
20% bits set to 1. Despite the initial search in the
wrong direction, FDA had no problems converging to
the global optimum.

The corresponding expression of W according to (9) is
W (p) = 2—p1 — pa — p3 + 4p123. These parameters are
not independent, the behaviour of FDA cannot easily
be predicted from this expression.

This example shows that the behavior of UMDA and
FDA can indeed be understood by analyzing the con-

tinuous landscape W (p). This analysis is not easy be-
cause of the high dimensionality of this landscape.

5 Conclusion

We have shown that UMDA transforms the discrete
optimization problem max f(x) into a continuous one
defined by max W (py, . .. , pn). With proportionate se-
lection UMDA performs gradient ascent on w.

UMDA solves difficult multi modal optimization prob-
lems. But there are functions with highly correlated
variables, where a search distribution using multivari-
ate distributions and conditional marginal distribu-
tions has to be used. This is done by the algorithm
FDA. The continuous fitness landscape W (p) for FDA
depends on conditional and marginal probabilities. By
analyzing the continuous landscapes we could show
which functions can be optimized by UMDA and which
functions need a more complex factorization.
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