Comparing the adaptive Boltzmann selection schedule SDS to truncation selection
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Abstract
FDA (the Factorized Distribution Algorithm) is an evolutionary algorithm that combines mutation and recombination by using a distribution.
The distribution is estimated from a set of selected points. It is then used to generate new points for the next generation. FDA uses a
factorization to be able to compute the distribution in polynomial time. Previously, we have shown a convergence theorem for FDA. But
it is only valid using Boltzmann selection. Boltzmann selection was not used in practice because a good annealing schedule was lacking.
Using a Taylor expansion of the average fitness of the Boltzmann distribution, we have developed an adaptive annealing schedule called
SDS. The inverse temperature 3 is changed inversely proportional to the standard deviation. In this work, we compare the resulting scheme
to truncation selection both theoretically and experimentally with a series of test functions. We find that it behaves similar in terms of

complexity, robustness and efficiency.
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1 Introduction

It is well known that evolutionary algorithms have difficulties
in optimizing functions with nonlinear interacting variables.
In order to optimize these functions, many variables have to
be changed together in a certain manner to obtain an improve-
ment.

In previous work [MMQ99], we have introduced the FDA
(Factorized Distribution Algorithm) which uses a probabil-
ity distribution that captures the dependencies between the
variables. The Boltzmann distribution turned out to be espe-
cially suited for theoretical analysis. The distribution remains
a Boltzmann distribution after selection, if Boltzmann selec-
tion is used. We have achieved a convergence result for this
algorithm. But the convergence theorem holds only for Boltz-
mann selection. This selection scheme is not often used, be-
cause similarly to simulated annealing it needs an annealing
schedule, which is difficult to choose.

Using the results from [MMO01], we will use a Taylor ex-
pansion of the average fitness of the Boltzmann distribution.
This expansion allows us to develop an efficient adaptive an-
nealing schedule for populations. With this annealing sched-
ule, FDA is invariant under positive linear transformations of
the function to optimize.

The outline of the paper is as follows. In section 2 the
concept of optimization using distributions is introduced. In
section 3, the Boltzmann distribution is defined and we dis-
cuss why it is a suitable distribution for optimization. How-
ever, in general, calculation of the Boltzmann distribution re-
quires an exponential computational effort. In section 4, we
describe how to factorize the Boltzmann distribution to obtain
a polynomial algorithm. The expansion of the average fitness
and the resulting annealing schedule follow in section 5. Be-
cause truncation selection has proven to be both robust and
efficient, we finally compare the resulting selection scheme
SDS to truncation selection in section 6.

2 Definitions

Our goal is optimize (maximize) a discrete function
f(x)=f(z1,...,2,), called the fitness function. For nota-
tional simplicity , we consider binary variables z; € {0,1}
only. The range of the function is thus R =2". Let M be the
set of optima (the optimum need not be unique).

All stochastic population based optimization methods can
be expressed by a probability model, where a probability dis-
tribution p(z) describes the distribution of the individuals in
the search space R. Mutation, crossover and selection then
become operators that transform these probability distribu-
tions. Important for us are the marginal and conditional prob-
abilities of the distribution. The marginal distributions are
defined as

pla:) =pi(z:) = > py) 1)
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This definition can be naturally extended to sets of vari-
ables as p(z;,z;). Sometimes we will also write p(z; =1) to
denote the marginal frequency p;(1). When p(z;) > 0, we
can define the conditional probability

p(.’Ei, mj) (2)

Instead of determining the distributions generated by a ge-
netic algorithm, we can also choose a distribution first and
then try to find the matching algorithm. A good candidate for
optimization is the Boltzmann distribution.

3 The Boltzmann distribution

Definition 1. For g > 0 define the Boltzmann distribution
of a function f(z) as
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where Z; () is the partition function. To simplify the nota-
tion 8 and/or f can be omitted.

The Boltzmann distribution is usually defined as
_s)

et [Z. The term g(z) is called the free energy and
T = 1/p the temperature. The Boltzmann distribution has
a number of properties, among them

Lemmal. Letx,, € M be a global optimum of the function
f(z) and z; a point with f(z;) < f(2.,). Then

Pp=o0,s IS the uniform distribution for any f.
pa(zm) > pp(xy), for g > 0 the inequality is strict.
Let g(z) := f(z) + c. Then pg s(x) = pg,q¢().
Let g(z) :=c- f(x). Then pg 4(x) = pep, ().

The third property means that the distribution is invari-
ant under addition of a constant. It is, however, not invariant
under multiplication. We will discuss how to overcome this
shortcoming in section 5.

The Boltzmann distribution is a suitable distribution for
optimization because it concentrates its weight with increas-
ing B around the global optima of the function. In theory, if it
were possible to sample efficiently from this distribution for
arbitrary 3, optimization would be trivial.

3.1 Boltzmann selection

Closely related to the Boltzmann distribution is Boltzmann
selection:

Definition 2. Given a distribution p and a selection param-
eter v, Boltzmann selection calculates the distribution of the
selected points according to

B p(;z:)e’Yf (=)
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Boltzmann selection is important because of the following
theorem:

p*(z) 4)

Theorem 1. Let pg(x) be a Boltzmann distribution. If Boltz-
mann selection is used with parameter -, then the distribution
of the selected points is again a Boltzmann distribution with

. B+ f (@)
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The (simple) proof can be found in [MMO99].

This allows us to define the BEDA (Boltzmann Estimated
Distribution Algorithm).

BEDA is a conceptional algorithm, because the calcu-
lation of the distribution requires a sum over exponentially
many terms. We have proven the following important conver-
gence theorem for it:

Theorem 2 (Convergence). Let AS(t) be an annealing
schedule, i.e. for every ¢ an increase in the inverse temper-
ature 8 by AB(t). Then for BEDA the distribution at time ¢

BEDA - Boltzmann Estimated Distribution Algorithm

1 t < 0. Generate N points according to the uniform

distribution p(z, 0) with 5(0) = 0.
2 do{
3 With a given AB(t) > 0, let

AB() f ()
P (2,8) = p(z,t)e '
Zy p(y7 t)eAﬁ(t)f(?/)
4 Generate N new points according to the distribu-
tionp(z,t + 1) = p*(=, t).

5 t<=t+1.
6 } until (stopping criterion reached)

is given by
(.0 B f () ©)
P\Z,t) = /5y
Zs(B(1))
with the inverse temperature 5(t) = Zizl AB(T). If B(t) —
oo, then with M the set of optima

1
lim p(z,t) = 4 /M TEM
{00 0 else
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Proof: Let 2™ € M be a point with maximal fitness and
z ¢ Mapointwith f(z) < f(z™). Then
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As B(t) — oo, p(z,t) converges to 0. Because p(z,t) =
p(y,t) for all z™,y™ € M, the limit distribution is the uni-
form distribution on the set of optima. L]

We can also make an estimate for the rate of convergence:

Lemma 2. Let there be a § such that for any non-optimal
point x we have with 2™ € M

fle) < f@™) =9 ©)

Then 09
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This means that when the indicated inverse temperature is
reached, drawing from pg will generate global optima with
probability bigger than 1/>.

ps(M) > 05 (10)

Proof: Let | M| be the number of optima. The number of
terms in the partition function is smaller than 2™. For z™ €
M we have with M := f(z™)
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So, to have pg(M) > 1/2, we need

en1n2—65 < 2|M| o 5 > n '2_1n(2|M|)
- - )

or as a sufficient condition (10). L]

(12)

Corollary 1. For a binary fitness function with integer val-
ues, with 8 > 0.7n half of the generated points will have
maximum fitness, independent of the fitness function.

Without a schedule the corollary doesn’t tell us very much,
as this value of S can be reached in any number of steps. It
can be used with fixed schedules, however, and as a stopping
criterion.

4 Factorization of the distribution

In this section we describe a method for computing a factor-
ization of the probability, given an additive decomposition of
the function:

Definition 3. Let sy,..., sy, be index sets, s; C {1,...,n}.
Let fs, be functions depending only on the variables «; with
j € s;. Then

flz) = Z fsi (@) (13)

is an additive decomposition of the fitness function f.
We also need the following definitions

Definition 4. Given sq,...,s,, we definefori =1,...,m
the sets d;, b; and ¢;:

d; = U 85, bj:=s; \ di—1, cii=s;Ndi—1  (14)
j=1

We set dg = 0.

In the theory of decomposable graphs, d; are called his-
tories, b; residuals and ¢; separators [Lau96]. In [MMO99],
we have shown the following important

Theorem 3 (Factorization Theorem). Let p(z) be a Boltz-
mann distribution with

@)= (15)
p(z) = ———
Zs(B)
and f(z)= Y7, fs: () be an additive decomposition. If
bi #0 Vi=1,...,1; d =X, (16)
Vi >23j < i suchthatc; C s; ()]
then
p(.z‘) = Hi:l p(mbi mci) (18)

FDA - Factorized Distribution Algorithm

[EEY

Calculate b; and ¢; from the decomposition of the
function.

2 Generate an initial population with N individuals
from the uniform distribution.

do {
Select N < N individuals using Boltzmann selec-
tion.
5 Estimate the conditional probabilities p(z,
from the selected points.

6 Generate new points according to p(z,t + 1) =
H;nzl p(xbi Le;s t)'

7 t<=t+ 1

} until (stopping criterion reached)

w

Te;, 1)

[ee]

The constraint defined as equation (17) is called the run-
ning intersection property [Lau96].

With the help of the factorization theorem, we can turn
the conceptional algorithm BEDA into FDA, the Factorized
Distribution Algorithm [MMQ99].

As the factorized distribution is identical to the Boltz-
mann distribution if the conditions of the factorization theo-
rem are fulfilled, the convergence proof of BEDA also applies
to FDA.

Not every additive decomposition leads to a factorization
using the factorization theorem. In these cases, more so-
phisticated methods have to be used. FDA can also be used
with an approximate factorization. In [MMO0], we have used
Bayesian networks to describe the dependencies and used the
minimum description length [FG99] to calculate the network
and thus the factorization from the data, i.e. without prior
knowledge of a decomposition. This algorithm is called the
LFDA (Learning Factorized Distribution Algorithm).

FDA can also be used with any other selection scheme, but
then the convergence proof is no longer valid. We think that
Boltzmann selection is an essential part in using the FDA.
This is even more true for the LFDA, because the theory
of learning the Bayesian network tries to gather independen-
cies from the data points. But these dependencies are exactly
the same as the ones implied by the additive decomposition
of the function defining the Boltzmann distribution [Lau96].
That means, if we start with a function fulfilling the factoriza-
tion theorem and generate points, then the learned model will
(with enough data points) lead to the same factorization as the
factorization theorem. But this is only true using Boltzmann
selection.

Because FDA uses finite samples of points to estimate the
conditional probabilities, convergence to the optimum will
depend on the population size.

Note that the UMDA (univariate marginal distribution al-
gorithm) [MUih98] is the same as FDA using the distribution
p(z) = [l pi(=;) regardless of the fitness function. For
UMDA , the convergence proof is therefore only valid for lin-
ear functions.



5 A new annealing schedule for the Boltzmann
distribution

Boltzmann selection needs an annealing schedule. Lemma 2
has shown how fast we have to anneal in order to reach con-
vergence within a given time frame. But if we anneal too fast,
the approximation of the Boltzmann due to the sampling er-
ror can be very bad. For an extreme case, if the annealing
parameter is very large, the second generation should consist
only of the global maxima.

In order to control the annealing schedule, we make a Tay-
lor expansion of the average fitness of the Boltzmann distri-
bution.

5.1 Taylor expansion of the average fitness

For UMDA, we have shown that the average fitness com-
pletely determines the behaviour of the algorithm [MMOQ].
In reference to S. Wright it is labelled W

Definition 5. The average fitness of a fitness function and a
distribution is

Wip) = f(a)p() (19)

For the Boltzmann distribution, we use the abbreviation
Wy (B) = Wy(pg,1)-

Theorem 4. The average fitness of the Boltzmann distribu-
tion W, () has the following expansion in 3:

W;(B) +Z’Bﬂ

i>1

(8 (20)

where M are the centred moments

ME(B) == S [f(x) — W ()] 'plx) (21)

T

They can be calculated using the derivatives of the partition
function:

M, (8) = (Zf (ﬁ))(i) fori>1, Mf=0 (22)
i+1 Zf (/B) - b 1
The proof can be found in [MMO1].

Corollary 2. We have approximatively

Wi () ~ W (B) + (B — ) - 07(8) (23)

Wwhere o% 2(B) is the variance of the distribution, defined as

Oy #(B) := M5(B).

This approximation is known from the theory of simulated
annealing, see [KGV83].

Lemma 3. The variance of the Boltzmann distribution obeys

f(z) # const. = 07(8) >0 (24)

Proof: We have Vz : pg(x) > 0. In order to have

o3(8) = Y _[f(@) = Wi(B)]’ps(x) =0,  (25)

T

we must have for all z: f(x)=W} in contradiction to the
assumption. n

Corollary 3. With f(x) # const. we have

B>p = Wi(B)>We(B) (26)

This important corollary tells us that the average fitness
is never decreasing for Boltzmann selection. A similar re-
sult was already obtained for proportional selection, see for
example [MMOQ].

5.2 The new annealing schedule

From (23) we can derive an adaptive annealing schedule. The
variance (and the higher moments) can be estimated from the
generated points. As long as the approximation is valid, one
can choose a desired increase in the average fitness and set
B(t + 1) accordingly. So we can set

WE(t) - Wy (B(t))
EI0)

From (23) we see that choosing A proportional to the in-
verse of the variance leads in the approximation to a constant
increase in the average fitness. This is much too fast, espe-
cially near the optimum. As truncation selection has proven
to be a robust and efficient selection scheme, we can try to
approximate the behaviour of this method. For truncation se-
lection, one can show that the response to selection Ry (t) is
approximatively given by [Miih98]

Rf(t) = Wf (ﬂ(t + 1)) — Wf (ﬂ(t))

27
= ITb\/O'? @7)

I, is the selection intensity, depending on the truncation
threshold 7, and b is called heritability. Therefore, we will
use a schedule proportional to the inverse of the square root

of the variance:
Lemma 4. AB(t) = c/\/af ) leads to an annealing

schedule where the average fltness mcreases approximatively
proportional to the standard deviation:

=Wy (,B(t + 1)) - Wy (ﬂ(t)) (28)
~eoy[o2(B(0) (29)

This annealing schedule is called SDS, the standard devia-
tion schedule.

We already know that FDA with Boltzmann selection re-
mains unchanged when we add a constant to the fitness func-
tion. Now we have additionally

AB(E) =Bt +1) — B(t) =

Ry(t)



Lemma 5. For Boltzmann selection with SDS, BEDA is in-
variant under linear transformations of the fitness function
with a positive factor.

Proof:  This lemma is true because the standard devia-
tion scales linearly under multiplication. Let f(z) be a fit-
ness function, consider f(z) = é- f(z). The claim is that
B(t) = B(t)/¢, then the distributions are the same for every
t. With t=0, g and g3 are 0, so it is true. Let now ¢ and
B=p(t) be given. From the previous iteration we know that
B =ple.

According to lemma 1, we have pg,f(z) =p; ;(z). Also,
o2(B)=¢ -a;(,é). Hence it follows that A3 (t) = AB(t)/é.
|

Corollary 4. Let o(t) := 1/a]%(ﬂ(t)), the standard devia-

tion. Then the response to selection for Boltzmann selection
with the SDSis given by

c [+
Rp(t) =) WMH-I (30)
i>1
2Mc 3Mc
—cot)+ o8 S L (3]

20?2 60(t)°

Note that this annealing schedule cannot be easily used for
simulated annealing, as the estimation of the variance of the
distribution requires samples that are independently drawn.
But the sequence of samples generated by simulated anneal-
ing are not independent.

6 Examples

Truncation selection has proven to be an efficient and robust
selection scheme. It is therefore interesting to study the dif-
ferences between truncation selection and Boltzmann selec-
tion. Note that the computational complexity of both selec-
tions schemes is O(N log N).

6.1 The function OneM ax

For OneMax we can calculate the Boltzmann distribution.
We have

ZIOEDIE Z <n> (7) =1+ (32

with |z| = Y7, #;. All marginal distributions remain the
same if started from the uniform distribution.

Zp(B) -pp(mr=1) = Yy el :Ti (nfl)eﬁﬁ’rﬂ

z,x1=1 i=0 ¢
=ef . (1+ef)nt
and therefore
eﬁ
14 6B

ps(z1=1) = =: Pp (33)

With theorem 4 the average fitness W () can be calcu-
lated using W (8) = Z}(8)/Z¢ (B):
(: n -ﬁﬁ> (34)

_n(l4eP)rlef ne?
o38) = B8 _ (LY - 1 )
Pz, \Z,8)) T (1 +€P)2

w = =
1(8) (1+ ef)n 1+¢€P
We get the following difference equation for the inverse tem-
perature:

The variance is given by (22):

1480

Blt+1)=p@1) +c- NI

(36)

Higher moments can also be calculated, the response can
be approximated by

e?2/n . (e” = 1)
2(ef 4+ 1)

Ry(t) =

= 37
cl+eﬁ + (37)

The annealing schedule uses only the first term in this expan-
sion, so we have

B2 /n
Ri(t) ~ 55 9)

For a closed (approximative) solution we can convert the
difference equation into a differential equation and get

dg c 2c
— = —— = -"—=cosh 2
@ = o = vr ohEw?) (39)
The solution of the differential equation with 5(0) = 0 yields
c-t . m/n
= - <Y
B(t) = 4argtanh [tan (%/ﬁ)] with t < 9 (40)
Together with equation (33) we get
PR | . fc-t
pa(t) = 5 (1 + sin (ﬁ)) (41)

If we compare this to previous results obtained for trunca-
tion selection [M(ih98], we see that the dynamic equation (41)
is exactly the same. The constant ¢ now plays the role of 1.
So from the theory of truncation selection, we can get a suit-
able range for ¢, namely ¢ € [0.8,1.3].

In figure 1, this theoretical result is compared to a simu-
lation run. The simulation was done using a population size
of 30000 individuals to get a good statistics, c=1, n=16.
The standard deviation needed for the schedule was estimated
from the population. The differences between theory and
simulation at the end are due to the simplification of using
a differential equation instead of the difference equation. The
theoretical curve is of course the same as the one for trunca-
tion selection.
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Figure 1: Univariate marginal distribution for OneMax with
Boltzmann selection, n = 16

Figure 2: Fitness distribution for OneMax: Truncation selec-
tion and Boltzmann selection lead to similar distributions.

In figure 2 we can see the distributions of the fitness val-
ues for OneMax and the two selection schemes with n =30
and a populations size of 10000 individuals. We used corre-
sponding selection intensity 7 = .3 and constant ¢=1.159.
As expected, the two distributions are very similar. Only in
the end there are distortions.

So for OneMax, despite a completely different mechanism
for selecting individuals, the theoretical results for infinite
population size are the same.

6.2 Kauffman’s n — k£ model

As another example for the similarity between the two selec-
tion schemes we consider a function from Kauffman’sn — &
model [KL87]. These functions consist of n binary variables
and n sub-functions f,, depending on z; and & further vari-
ables. The values of the sub functions are chosen uniformly
random from the interval [0, 1]:

NKni(@) =23 fo(@) |sil=k+1,i€s; (42
i=1

In figures 3 and 4 we can see distributions of the fitness
values for truncation selection and Boltzmann selection with
n=230, 7 = 0.3 resp. ¢=1.159, k=2 with adjacent neigh-
bours, i.e. s;={i — 1,4,4 + 1}. In this case, the distribution
factorizes. As was the case for OneMax, the distributions

Figure 4: Fitness distribution for NK, Boltzmann selection

remain similar.

6.3 The Jump function

Next we consider the following Jump function.

|| lz| <m—kor|z|=n

43
H —|z| else (43)

where H := 2(n— k) and k is a positive integer, the gap size.
In figure 5 is a typical example with n=32 and k=4.

35
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Jump Function —+— 4
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20

f(1x))

15
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5_
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[X[=Xq+...+X3p

Figure 5: Definition of the Jump function with n = 32 and
k=4

The function starts like OneMax, but near the optimum the
fitness decreases. Optimisation algorithms have to cross the
gap in order to reach the global optimum. Theoretical analy-
sis of the Boltzmann distribution is complicated, therefore we
show only empirical results.

We cannot use the FDA for this function, because even
with a gap width £=1 it does not factorize. But we can use



UMDA. In [MMOO], we have shown that UMDA operates
on the landscape of the average fitness, parameterized by the
univariate marginal distributions (bit frequencies). This land-
scape smoothes the discrete optimization problem into a con-
tinuous one. The details are out of the scope of this paper.

It is important to note that the convergence proof of BEDA
does not apply here, as the probability distribution used is not
the Boltzmann distribution, because the factorization is not
valid. Nonetheless it is possible to use Boltzmann selection.

32 T T T T 1+ 1]
Boltz, c=1 O

30 - Trunc, 1=.4 X 7
28 Boltz-2, c=2.8 ©]
Trunc-2,1=.15 +

26 E

2 24+ E

22 -

20 -

18 -

16 L 1 1 1 1
0.5 0.6 0.7 0.8 0.9 1

P

Figure 6: Comparison of Boltzmann selection and truncation
selection for Jump. Two graphs are shifted 2 down for read-
ability.

In figure 6, this smoothing together with four runs of the
UMDA are shown. Plotted are the average fitness against the
average bit frequency p with a population size N =1000. The
solid line shows the theoretical values calculated by setting
all frequencies p; to p. This is justified by the fact that the
problem is symmetrical in the variables, see [MMO00O].

The values of = and ¢ were chosen to correspond to
roughly the same behaviour in the beginning. One can see
that truncation selection with 7=0.4 is not able to cross the
local optimum. Only with a much higher selection threshold
of 7 = 0.15 does this happen. Boltzmann selection, on the
other hand, is not deceived in this case. It seems to be able to
adapt better to this situation.

Note that this comes at a price: in order to have a good
estimate for the standard deviation, we usually need a higher
population size than is needed for truncation selection. Also,
due to the exponential growth, this method is more sensitive
to fixation, because a single good individual can dominate the
population more easily than with truncation selection: there
the weights are all equal among the selected set.

As the speed of convergence is so different, we have not
plotted the evolution of the fitness distributions.

6.4 Comparison of population size and number of gener-
ations for several test functions

Instead of comparing the distributions, we can also directly
compare the performance of the two selection methods, i.e.
the success rate for a given population size and the number of

generations. This is done in table 1. n is the bit length of the
problem, N the population size, Succ the number of times the
optimum was found in 100 runs, Gen1 the number of gener-
ations till the optimum was generated for the first time (only
the successful runs were counted), Gen the number of gen-
erations until the population converged and o the standard
deviation of this value. For a discussion of the scaling of the
algorithms see [MM99].

The analysed functions are the following. We have already
introduced OneMax,NK and Jump. For NK, we used this
time 100 different instances with £ = 2 and again the neigh-
bours were chosen adjacent. In this case, the global optimum
can be easily calculated using dynamic programming. Each
of the 100 runs was thus faced with a different problem.

We used only one instance of the Jump function, because
doubling the bit length without adjusting the gap size leads
to a much simpler problem. The same is true for the Saw
function which can be seen in figure 7.

T
Saw

Value
N
T
1

0 I I I I I
0 5 10 15 20 25 30

IXI = Xq + ..+ X3
Figure 7: Definition of the Saw function.

Dec is the deceptive function. It is the sum of several sub-
functions shown, for example with 32 bits

8
Dec(x1,...,x32) = z Deca(xai—3, Tai—2,Tai—1,%4;)
i=1
where Decy is defined in table 2. The function has the global
maximum when all bits are 1, but local information points
towards 0.

E 0[1]2[3[4
Dec(jz]) [3[2]1]0 4

Table 2: Definition of Dec,
IsoC, finally, is defined as
m—1

ISJC(Q?) = Z I&)C1($2i_1, .’L‘zi) —+ IwCQ(.'L'Qm_l, mgm)

i=1

with

T 000110 11
IsoC; || m | O 0 lm-—1
IsoC> || 0 | O | O m

and n=m + 1. The global optimum is again (1,1,...,1)
with value m - (m — 1) + 1. This optimum is triggered by



Trunc,7 = 0.3 Boltz, ¢ = 1.159
Func | n || N | Succ [Genl[Gen| o N | Succ [Genl|Gen| o
OneMax | 32 40 | 89/100 52| 7.5]0.64 40 | 89/100 701126 | 1.54
OneMax | 64 60 | 91/100 84 110.9 | 0.65 65 | 89/100 | 10.4 | 16.6 | 1.87
Jump 32 80 | 96/100 5.0 1 30.0 | 0.00 80 | 99/100 6.4 | 22.3 | 8.18
Saw 30 120 | 94/100 8.5123.9]6.40 120 | 97/100 94 | 23.715.01
Dec 32 140 | 90/100 46| 7.710.75 160 | 87/100 5.0112.01 2.13
Dec 64 280 | 98/100 7.5 110.6 | 0.60 320 | 97/100 831]15.4|1.38
NK 32 220 92/100 53| 9.2]0.93 250 90/100 6.5 | 28.1 | 3.80
NK 64 400 | 96/100 9.3113.1]0.97 500 | 92/100 | 11.4 | 30.0 | 0.00
IsoC 32 400 | 95/100 4.2 | 8.71]0.89 350 | 95/100 5.1 (14.7 | 1.48
IsoC 64 || 1200 94/100 7.3 113.0 | 1.00 {| 1000 94/100 84119.4 | 1.62

Table 1: Success rates and generations with population size N for different problems with bit length n. The program was

stopped after 30 generations if not convergenced.

IsoC, and strongly isolated. The second best value occurs
several times, but only with individuals with leading zeroes,
for example (0, .. .,0) with value m - (m — 1). All of these
good points are very far away from the global optimum in the
fitness landscape.

We used exact factorizations for all cases except the Jump
function and the Saw, where UMDA was used.

From table 1 several observations can be made. First of all,
the populations sizes needed for a given success rate and the
number of generations were similar for both selection meth-
ods. The number of generations until the optimum was gener-
ated was about 20% higher for the whole range of functions
considered. This gap was larger when time to convergence
was considered. This means that truncation selection is faster
at the very end. Note that in some cases, the algorithms did
not converge at all. This can be seen from average genera-
tion numbers greater than 20, because the algorithms were
stopped in generation 30. The population size needed for
about 90% success was higher in some and lower in others
like the Jump function (as predicted from section 6.3).

7 Conclusions

FDA has been shown to be an efficient optimization algo-
rithms when interactions between variables have to be con-
sidered to reach the global optimum. The convergence proof
of FDA requires that Boltzmann selection is used. But Boltz-
mann selection critically depends on a good annealing sched-
ule. Therefor we have previously used truncation selection.
We have now invented an adaptive annealing schedule SDS
that leads to an optimization algorithm that is almost as ro-
bust as truncation selection and for which the convergence
proof remains valid. We have seen in several examples that
the behaviour of Boltzmann selection is similar to truncation
selection.

Boltzmann selection with the SDS has proven to be com-
parable in computational complexity, robustness and effi-
ciency to truncation selection and we have a convergence
proof for it for exact factorizations.
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