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Abstract

We have previously shown that a genetic algorithm can be approx-
imated by an evolutionary algorithm using the product of univariate
marginal distributions of selected points as search distribution. This algo-
rithm (UMDA) successfully optimizes difficult multi-modal optimization
problems. For correlated fitness landscapes more complex factorizations
of the search distribution have to be used. These factorizations are used
by the Factorized Distribution Algorithm FDA. In this paper we extend
FDA to an algorithm which computes a factorization from the data. The
factorization can be represented by a Bayes network. The Bayes network
is used to generate the search points.

Keywords Genetic Algorithm, Distribution, Bayesian Network,
Factorization of Distribution, Boltzmann Distribution

§1 Introduction

Simulating evolution as seen in Nature has been identified as one of the
key computing paradigms for the next decade. Today evolutionary algorithms
have been successfully used in a number of applications. These include discrete
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and continuous optimization problems, synthesis of neural networks, synthesis of
computer programs from examples (also called genetic programming) and even
evolvable hardware. But in all application areas problems have been encoun-
tered where evolutionary algorithms performed badly. Therefore a mathemat-
ical theory of evolutionary algorithms is urgently needed. Theoretical research
has evolved from two opposite ends; from the theoretical approach there are
theories emerging that are getting closer to practice; from the applied side ad
hoc theories have arisen that often lack theoretical justification.

Part of our RWC related research was dedicated to a mathematical anal-
ysis of evolutionary algorithms for optimization. This analysis has lead to a
simplification of genetic algorithms. The corresponding algorithm is called the
univariate marginal distribution algorithm UMDA. It uses search distributions
instead of the usual recombination/crossover of genetic strings”. UMDA has
been extended to the factorized distribution algorithm FDA which solves ad-
ditively decomposed problems where UMDA and genetic algorithms perform
badly®.

The outline of the paper is as follows. We first introduce UMDA and its
theoretical analysis. Then FDA is shortly discussed. The main part is dedicated
to LFDA. This algorithm computes the factorization from the data.

§2 From Recombination to Distributions

For notational simplicity we restrict the discussion to binary variables
z; € {0,1}. We use the following conventions. Capital letters X; denote vari-
ables, small letters x; assignments. Let x = (z1,...,z,) denote a binary vector.
Let a function f : X — RZ2° be given. We consider the optimization prob-
lem x,,: = argmazf(x). The optimization is done with a set of points called

population.

Definition 2.1
Let p(x,t) denote the probability of x in the population at generation ¢. Then
p(zi,t) = Z p(x,t) defines the univariate marginal distributions.

x,X;=z;

p(z;,t) depends only implicitly on t. We will generally write p(x;). If different
generations are involved, we will denote it by p(z;, t).
We have shown that any genetic algorithm can be approximated by an algorithm

using univariate marginal distributions distributions only™.
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UMDA

e STEP 0: Set t <= 1. Generate N >> 0 points randomly.

e STEP 1: Select M < N points according to a selection method. Com-
pute the marginal frequencies p®(z;,t) of the selected set.

e STEP 2: Generate N new points according to the distribution

p(x,t+1) Hp x;,t). Set t < ¢+ 1.

e STEP 3: If termination criteria are not met, go to STEP 1.

The simple genetic algorithm uses fitness proportionate selection®. In this case
the probabilities of the selected points are given by p®(x,t) = p(x,t)f(x)/f(t)

where f(t) Z p(x,t) f(x) denotes the average fitness of the population. For

the theoretical analysis we consider f(t) to dependent on p(z;). In order to

emphasize this dependency we write

W (p(z1 = 0),p(zl =1),...,p(en = 1)) := f(t) 1)

For infinite populations the dynamics of UMDA leads to a deterministic differ-

ence equations for p(z;)”.

i(t
ple,t+1) = plas, ) 1) @)
where f;(t) Z f(x H pj(z;,t). The equations can be written as
x, X;=z; Jj#i
aaw
pwi,t +1) = plas,t) 522 3)

Equation 3 shows that UMDA performs a gradient ascent in the landscape given
by W. Despite its simplicity UMDA can optimize difficult multi-modal functions.
We discuss only the function BigJump. It is defined as follows, with |x|; = Z x;

equal to the number of 1-bits:

xl1 0<|x[1 <n—m
BigJump(n,m, k,x) := 0 n—m<|xj1<n 4)

k-n |x1=n
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Fig. 1 BigJump(30,3,20), UMDA, p versus average fitness, Popsize=2000

The bigger m, the wider the valley. k£ can be increased to give bigger weight to
the maximum. We have BigJump(n, 1,1) = OneMax.

BigJump depends only on the number of 1-bits of the genetic string.
Therefore we make the assumption that all p(z; = 1) are identical to a single
value denoted as p. Then W depends on a single parameter only. W (p) is shown
in Figure 1. W (p) is smooth, it has only a small valley where BigJump has a
deep canyon. The open circles are the values of p determined by an UMDA
rum. One can see that the probability p changes little when W (p) increases only
slightly.

This simple example demonstrates in a nutshell the results of our the-
ory.  Ewvolutionary algorithms transform the fitness landscape given by f(x)
into a fitness landscape defined by W (p). This transformation often smoothes
the rugged fitness landscape f(x). There exist difficult multi-modal fitness land-
scapes f(x) which are transformed into unimodal landscapes W (p). In the W (p)
landscapes UMDA performs a gradient ascent.

But there exist many optimization problems where UMDA is mislead. A
well known example are deceptive functions introduced by Goldberg®. Genetic
algorithms and UMDA will converge to local optima, because they cannot detect
correlations between the variables. This problem can be solved by using higher
order distributions for the factorization. This is discussed next.

83 FDA — The Factorized Distribution Algo-
rithm
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For Boltzmann selection, also called exponential proportionate selection,
we have proven a factorization theorem for the distribution p(x,t) and conver-
gence for an algorithm using this factorization®.

Theorem 3.1
Let p(x,0) be randomly distributed. Let 3i,...,8:—1 be the schedule of the
inverse temperature for Boltzmann selection. Then the distribution is given by

eBf(x) 5
) = - ©
t—1
where g = Z Bi. Zg is the partition function Zg = Z P10,
i=1 x

Unfortunately p(x,t) consists of 2" — 1 variables. This seems to make
this result useless. But it is very easy to prove that each distribution can be
factored into a product, where each variable occurs only once on the left side of

a conditional marginal distribution.

Definition 3.1
The conditional probability p(x|y) is defined as follows
p(x,y)
p(xly) = ———= 6
(xly) o0y) (6)
Theorem 3.2 (Bayesian Factorization)

Each probability can be factored into

n

p(x) = p(z1) [ [ p(ilpas) (7)
=2
Proof: By definition of conditional probabilities we have

n

p(x) = p(a1) [[ p(@iler, - - wi1) (8)

=2

Let pa; C {x1, -, z;—1}. If 2; and {z1,---,2;_1} \ pa; are conditionally inde-

pendent given pa;, we can simplify p(z;|z1,- -, zi—1) = p(z;|pa;). m

PA; are called the parents of variable X;. This factorization defines a

directed graph. In the context of graphical models the graph is called a Bayesian
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network®. This factorization is used by the Factorized Distribution Algorithm
FDA.

FDA

e STEP 0: Set t <= 0. Generate N > 0 points randomly.

e STEP 1: Selection

e STEP 2: Compute the conditional probabilities p®(zi|pa;,t) using the
selected points.

e STEP 3: Generate a new population according to p(z,t + 1) =

n
Hps (ml |pai7 t)
=1

e STEP 4: If termination criteria is met, FINISH.
e STEP 5: Set t < t+ 1. Go to STEP 2.

FDA can be used with an exact or an approximate factorization. It is not re-
stricted to Bayesian factorization. FDA uses finite samples of points to estimate
the conditional distributions. Convergence of FDA to the optimum will depend
on the size of the samples.

The amount of computation of FDA depends on the size of the popu-
lation () and the number of variables used for the factors. There exist many
problems where the size of the factors is bounded by k independent from n. In
this case FDA is computationally efficient®. If the fitness function is separable,
FDA can be mathematically analyzed®. But for the function BigJump an exact
factorization needs a factor of size n. Then the amount of computation of FDA
is exponential in n. We have seen before that for BigJump UMDA will already
find the global optimum. Thus an exact factorization is not a necessary condi-
tion for convergence. But it is necessary if we want to be sure that the optimum
is found.

From a heuristic point of view we would like to find the smallest fac-
torization leading to convergence of FDA to the global optima. But how can
we find such a factorization? Part of this problem is solved by an evolutionary

algorithm which computes the factorization during the optimization run.

84 LFDA - Learning a Bayesian Factorization
Computing the structure of a Bayesian network from data is called learn-

ing. Learning gives an answer to the question: Given a population of selected
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points M (t), what is a good Bayesian factorization fitting the data? The most
difficult part of the problem is to define a quality measure also called scoring
measure.

A Bayesian network with more arcs fits the data better than one with
less arcs. Therefore our scoring metric should give the best score to the minimal
Bayesian network which fits the data. It is outside the scope of this paper to
discuss this problem in more detail. The interested reader is referred to the two
papers by Heckerman and Friedman et al. in®.

For Bayesian networks two quality measures are most frequently used -
the BDe score and the Minimal Description Length (MDL) score. We concen-
trate on the MDL principle. This principle is motivated by universal coding.
Suppose we are given a set D of instances, which we would like to store. Natu-
rally, we would like to conserve space and save a compressed version of D. One
way of compressing the data is to find a suitable model for D that the encoder
can use to produce a compact version of D. In order to recover D we must also
store the model used by the encoder to compress D. Thus the total description
length is defined as the sum of the length of the compressed version of D and
the length of the description of the model. The MDL principle postulates that
the optimal model is the one that minimizes the total description length.

We use Bayesian networks as our model. It is defined as a graph with a
probability distribution p. Let M = |D| denote the size of the data set. Then
MDL is approximately given by"

MDL(B,D) = -1d(P(B)) + M - H(B, D) + %PA -1d(M) (9)

with 1d(z) := logy(x). P(B) denotes the prior probability of network B, PA =
Z 2/P2il gives the total number of probabilities to compute. H (B, D) is defined

i

by

HB,D)=->3% m(”:]"\f“")ldmﬁ(;(i‘;") (10)

i=1 pa; x;
where m(x;,pa;) denotes the number of occurrences of z; given configuration

pa;. m(pa;) = Zm(x,-,pa,-). If pa; = 0, then m(z;,0) is set to the number of
Z;

occurrences of z; in D.
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The formula has an interpretation which can be easily understood. If
no prior information is available, P(B) is identical for all possible networks. For
minimizing, this term can be left out. 0.5PA -1d(M) is the length required to
code the parameter of the model with precision 1/N. Normally one would need
PA -1d(M) bits to encode the parameters. However, the central limit theorem
says that these frequencies are roughly normally distributed with a variance of
N~'/2_ Hence, the higher 0.51d(M) bits are not very useful and can be left out.
M - H(B, D) has two interpretations. First, it is identical to the logarithm of
the maximum likelihood (1d(L(B : D)). Thus we arrive at the following principle:

Choose the model which mazimizes ld(L(B : D) — 0.5PA - ld(M).

Second, H (B, D) is the conditional entropy of the network structure B, defined
by PA; and the data D. The above formula is appealing, because it has no
parameter to be tuned. But the formula has been derived under many simpli-
fications. In practice, one needs more control about the quality vs. complexity

tradeoff. Therefore we use a weight factor a.
BIC(B,D,a) = —M -H(B,D) — aPA-1d(M) (11)

This measure with @ = 0.5 has been first derived by Schwarz'® as Bayesian
Information Criterion. The problem of how to control a has been intensively
studied by Zhang and Miihlenbein in the context for neural networks'®.

To compute a network B* which maximizes BIC requires a search
through the space of all Bayesian networks. Such a search is more expensive
than to search for the optima of the function. Therefore the following greedy al-
gorithm has been used. k4, is the maximum number of incoming edges allowed

for each node.
BN(a, kmax)

e STEP 0: Start with an arc-less network.

e STEP 1: Add the arc (z;,z;) which gives the maximum increase of
BIC(a) if |PA;| < kmqs and adding the arc does not introduce a cycle.

e STEP 2: Stop if no arc is found.

Checking whether an arc will introduce a cycle can be easily done by maintaining

for each node a list of parents and ancestors, i.e. parents of parents etc. (z; — z;)
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introduces a cycle if z; is ancestor of z;.

The BOA algorithm of Pelikan'” uses the BDe score. This measure
has the following drawback. It is more sensitive to coincidental correlations im-
plied by the data than the MDL measure. As a consequence, the BDe measure
will prefer network structures with more arcs over simpler networks”. The BIC
measure with o = 1 has also been proposed by Harik®. But Harik allows only
factorizations without conditional distributions. This restricts the fitness func-
tions to separable functions. Simple tree structures for the search distribution
have been used by Baluja® and De Bonet et al.”.

Given the BIC score we have several options to extend FDA to LFDA
which learns a factorization. Due to limitations of space we can only show
results of an algorithm which computes a Bayesian network at each generation
using algorithm BN (a, kmaz)- FDA and LFDA should behave fairly similar, if
LFDA computes factorizations which are in probability terms very similar to the
FDA factorization. FDA uses the same factorization for all generations, whereas
LFDA computes a new factorization at each step which depends on the given
data M.

We have applied LFDA to a number of problems. Here we only discuss
the functions OneMax, BigJump and Deceptive-4'". Additional examples can
be found in'?.

Function | n| a| N| 7| Succ.% | SDev
OneMax 30 | UMDA 30 | 0.3 75 4.3
30 0.25 | 100 | 0.3 2 1.4
30 0.5 | 100 | 0.3 38 4.9
30 0.75 | 100 | 0.3 80 4.0
30 0.25 | 200 | 0.3 71 4.5
BigJump(30,3,1) 30 | UMDA | 200 | 0.3 100 0.0
30 0.25 | 200 | 0.3 58 4.9
30 0.5 | 200 | 0.3 96 2.0
30 0.75 | 200 | 0.3 100 0.0
30 0.25 | 400 | 0.3 100 0.0
Deceptive-4 32 | UMDA | 800 | 0.3 0 0.0
32 FDA | 100 | 0.3 81 3.9
32 0.25 | 800 | 0.3 92 2.7
32 0.5 | 800 | 0.3 72 4.5
32 0.75 | 800 | 0.3 12 3.2

Table 1 Numerical results for different algorithms, LFDA with BN(a, 8)

Table 1 summarizes the results. For LFDA we used three different values
of a, namely a = 0.25,0.5,0.75. The smaller «, the less penalty for the size of
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the structure. Let us discuss the results in more detail. @ = 0.25 gives by far
the best results when a network with many arcs is needed. This is the case for
Deceptive-4. Here a Bayesian network with three parents is optimal. a = 0.25
performs bad on problems where a network with no arcs defines a good search
distribution. For the linear function OneMax BIC(0.25) has only a success rate
of 2%. The success rate can be improved if a larger population size N is used.
The reason is as follows. BIC(0.25) allows denser networks. But if a small
population is used, spurious correlations may arise. These correlations have a
negative impact for the search distribution. The problem can be solved by using
a larger population. Increasing the value from N = 100 to N = 200 increases
the success rate from 2% to 71% for OneMax.

For Bigjump a Bayesian network with no arcs is able to generate the
optimum. An exact factorization requires a factor with n parameters. We used
the heuristic BN with k,,,, = 8. Therefore the exact factorization cannot be
found. Therefore a = 0.75 gives the best results. BIC(0.75) enforces smaller
networks. But BIC(0.75) performs very bad on Deceptive-4. Taking all results
together, BIC(0.5) gives good results. This result supports the BIC estimate

from Schwarz.

85 Conclusion

Our theory of genetic algorithms has lead to the design of UMDA which
uses search distributions instead of recombination of strings. UMDA is able to
solve difficult multi-modal optimization problems. This result partly explains
the success of genetic algorithms. But UMDA performs badly for functions with
strongly correlated variables or if the transformed fitness landscape W (p) has
many local minima. Therefore we extended UMDA to the Factorized Distri-
bution Algorithm FDA, which uses more general factorizations of the search
distribution.

The theory of FDA uses results from simulated annealing and graph-
ical models. The extension of FDA to an algorithm LFDA, which computes
an approximate factorization from the data was done by adapting techniques
developed for learning the structure of Bayesian networks to our application.

The theory presented covers discrete optimization problems without con-
straints. It can be extended to optimization problems with constraints. But
in order to give good results, constraints and the fitness function have to be
compatible®. The theory can also applied to continuous optimization problems.
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Application of the theory to genetic programming is also possible.
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