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We shortly review our theoretical analysis of genetic algorithms and provide
some new results. The theory has lead to the design of three different al-
gorithms, all based on probability distributions instead of recombination of
strings. In order to be numerically tractable, the probability distribution has to
be factored into a small number of factors. Each factor should depend on a
small number of variables only. For certain applications the factorization can
be explicitly determined. In general it has to be determined from the search
points used for the optimization. Computing the factorization from the data
leads to learning Bayesian networks. The problem of finding a minimal struc-
ture which explains the data is discussed in detail. It is shown that the Bayesian
Information Criterion is a good score for this problem. The algorithms are ex-
tended to probabilistic prototype trees used for synthesizing programs.

1.1 Introduction

Simulating evolution as seen in nature has been identified as one of the key
computing paradigms for the next decade. Today evolutionary algorithms have
been successfully used in a number of applications. These include discrete
and continuous optimization problems, synthesis of neural networks, synthesis
of computer programs from examples (also called genetic programming) and
even evolvable hardware. But in all application areas problems have been en-
countered where evolutionary algorithms performed badly. Therefore a math-
ematical theory of evolutionary algorithms is urgently needed. Theoretical re-
search has evolved from two opposed end; from the theoretical approach there
are theories emerging that are getting closer to practice; from the applied side
ad hoc theories have arisen that often lack theoretical justification.

Evolutionary algorithms for optimization are the easiest for theoretical
analysis. Here results from classical population genetics and statistics can be
used. In our theoretical analysis we have approximated the dynamics of genetic
algorithms by probability distributions. Subsequently this analysis has lead to a
new algorithm called the Univariate Marginal Distribution Algorithm UMDA.
It uses search distributions instead of the usual recombination/crossover of
genetic strings [9].

The outline of the paper is as follows. First the theory to analyze genetic al-
gorithms and UMDA is introduced. Then UMDA is extended to the Factorized
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Distribution Algorithm FDA. It uses a general factorization of the probability
distribution. FDA optimizes problems where UMDA and genetic algorithms
perform badly [8]. FDA needs a valid factorization as input. For some prob-
lems this cannot be done. The factorization has to be determined from the data.
This problem is solved by mapping probability distributions to Bayesian net-
works. To find a good Bayesian network structure explaining the data is called
learning. The corresponding algorithm Learning Factorized Distribution Al-
gorithm LFDA is discussed with several numerical examples.

We then investigate if the theory can be applied to other problems in
evolutionary computation. The first example is synthesis of programs by a
probabilistic tree. The second example is the synthesis of neural trees.

The paper summarizes popular approaches for synthesizing networks or
programs. It analyzes the approaches with a common theoretical framework.
In addition it formulates open research issues.

1.2 From Recombination to Distributions

For notational simplicity we restrict the discussion to binary variables ��������	��

�
. We use the following conventions. Capital letters � � denote variables,

small letters ��� assignments. Let ����� ��� ��������� ���	� denote a binary vector. Let
a function �����! #"%$�& be given. We consider the optimization problem�('*),+-� argmax �-�.� � .
Definition Let /��0� �21 � denote the probability of � in the population at gen-
eration

1
. Then /3� ��� �41 � �6587:9 ;-<.=�>?<?/��.� �41 � defines the univariate marginal

distributions.

Mühlenbein [9] has shown that any genetic algorithm can be approximated
by an algorithm using univariate marginal distributions only.

UMDA@ STEP 0: Set
1BAC


. Generate DFE �
points randomly.@ STEP 1: Select GIHJD points according to a selection method. Compute

the marginal frequencies /LK� � � � �41 � of the selected set.@ STEP 2: Generate D new points according to the distribution/3�.� �41LM8
 � �ON �� = � /�K� � � � �41 � . Set
1PAQ1(M8


.@ STEP 3: If termination criteria are not met, go to STEP 1.
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The simple genetic algorithm uses fitness proportionate selection [3]. In
this case the probabilities of the selected points are given by /(K��0� �21 � �/��.� �41 � �-�0� �4RTS�-� 1 � where S�-� 1 � � 5 73/��.� �41 � �-�0� � denotes the average fitness of
the population.

For theoretical analysis we consider S�-� 1 � as depending on /�� ��� �21 � . In order
to emphasize this dependency we writeU �V/��0� � � �W�21 � � /��0� 
 � 
X�41 � ��������� /3�.� � � 
X�41 �2� �V� S�3� 1 � (1.1)

For infinite populations the dynamics of UMDA leads to a deterministic dif-
ference equations for /�� �Y� �21 � [9]./�� � � �41(MZ
 � �[/�� � � �21 � S� � � 1 �U (1.2)

where S� � � 1 � � 5 7:9 ; < =�> < �-�.� � N �\�]= � /�� � \ �41 � . These equations can be written
as/�� ��� �41(MZ
 � �[/�� �^� �21 � _�`_ )ba >?<0cU � 1 � (1.3)

Equation 1.3 shows that UMDA performs a gradient ascent in the landscape
given by

U
. Despite its simplicity UMDA can optimize difficult multi-modal

functions. We take as first example the function BigJump. It is defined as
follows, with d �ed � � 5 ��� equal to the number of 1-bits:

BigJump �.f �4gh�jiY� � � �V� kl m d �ed � � HOd �ed � Hnfpo g� fpo gFq d �ed � q fisr f d �ed � �Zf (1.4)

The bigger
g

, the wider the valley.
i

can be increased to give bigger weight to
the maximum. For

g � 
 we obtain the popular OneMax function defined byt f�u�Gwv � �.f � ��d � d � .
BigJump depends only on the number of bits on. To simplify the analysis

we assume that all /�� � � � 
 � are identical to a single value denoted as /�� 1 � .
Then

U
depends only on one parameter, p.

U �V/ � is shown for
g �yx � andi �{z � in figure 1.1. In contrast to the BigJump function

U �|/ � looks fairly
smooth. The open circles are the values of /�� 1 � determined by an UMDA rum,
setting /3� 1 � �}� 
 R f 5 � /3� �^� �21 � . Note how closely the simulation follows the
theoretical curve. Furthermore the probability /�� 1 � changes little over time
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Figure 1.1
BigJump(30,3,20), UMDA, ~ versus average fitness, Popsize=2000

when
U

increases only slightly.
This simple example demonstrates in a nutshell the results of our theory. It

can be formulated as follows: Evolutionary algorithms transform the original
fitness landscape given by �-�.� � into a fitness landscape defined by

U �.� � .
This transformation smoothes the rugged fitness landscape �-�0� � . There exist
difficult fitness landscapes �-�.� � like �������L� g / which are transformed into
simple landscapes

U �|/ � . In these landscapes simple evolutionary algorithms
will find the global optimum.

A still more spectacular example is the Saw landscape. The definition of
the function can be extrapolated from figure 1.2. In Saw �.f �4gh�ji � , f denotes
the number of bits and z g the distance from one peak to the next. The highest
peak is multiplied by

i
(with

i H 
 ), the second highest by
i^�

, then
i	�

and so
on. The landscape is very rugged. In order to get from one local optimum to
another one, one has to cross a deep valley.

But again the transformed landscape
U �V/ � is fairly smooth. An example

is shown in figure 1.3. Whereas �-� ��� has 5 isolated peaks,
U �|/ � has three

plateaus, a local peak and the global peak. Therefore we expect that UMDA
should be able to cross the plateaus and terminate at the local peak. This
behavior can indeed be observed in figure 1.3. Furthermore, as predicted by
equation 1.3 the progress of UMDA slows down on the plateaus.

These two examples show that UMDA can solve difficult multi-modal op-
timization problems. But there are many optimization problems where UMDA
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Figure 1.2
Definition of Saw(36,4,0.85)

is mislead. UMDA will converge to local optima, because it cannot explore
correlations between the variables. The first example is a deceptive function.
We use the definition

Decep �.�P�j�	���|��� �s������� �e� �����J� �e� ���Z�� � �e� � �8� (1.5)

The global maximum is isolated at  ����¡�¢��£�£�£���� . A deceptive function of
order � is a needle in a haystack problem. This is far too difficult to optimize.
We simplify the optimization problem by adding l distinct ¤¦¥�§,¥©¨��ª�	� -functions
to give a fitness function of size «��8¬:­P� . This function is also deceptive. The
local optimum  n�®���	��£�£�£,�©�¢� is surrounded by good fitness values, whereas
the global optimum is isolated.

Decep �.«P�j�	�e� ¯°±³² �j´ µ·¶3�j´}¸}¸}¸ Decep ¹©�.  ± �4  ± ¶3� ��£�£�£��2  ± ¶�µ?º�� �·�j�	» (1.6)

In figure 1.4 we show the average fitness ¼½�V¨Y� and an actual UMDA run.
Starting at ¨3�0�¾�e�Z�W£ ¿ UMDA converges to the local optimum �À���0�W��£�£�£,�©�¢� .
UMDA will converge to the global optimum if it starts near to the optimum,
e.g. ¨����¢�ÂÁw�W£ Ã . Also shown is a curve which arises from an algorithm using
fourth order marginal distributions. This algorithm converges to the global
optimum, even when the initial population is generated randomly. But also for
this algorithm ¨3�.Ä2� decreases first. The algorithm is discussed in section 1.3.

The next example is a modified BigJump. The peak is now shifted away
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Figure 1.3
Saw(36,4,0.85), UMDA, ~ versus average fitness, Popsize=2000

from the corner ����� 
¢�������,��
 � . It is defined as follows

S-Peak �.f �4gh�ji � � Å �Æ � = � �^��Ç Misr � gyMZ
 �
È � 
 o �Y��� r�r�r � 
 o ��ÉÊ�¡�^É�Ë�� r�r�r �^�	Ì
This function is difficult to optimize, because the global optimum at� �	���������4�	��
X�������·��
 � is now in competition with a local optimum at � �� 
X����������
 � . We discuss in more detail the function S-Peak(30,3). For the pre-

sentation we assume that the first three univariate marginal distributions are
equal, e.g. /�� �L��� ��/3� � � � ��/3� � � � �}�Ív and the remaining ones are equal
to Î . This means that

U
depends on two parameters. In order to generate the

global optimum v has to approach 0 and Î has to approach 1. In figure 1.5 iso-
lines of

U �0v � Î � are shown as well as trajectories for UMDA runs starting at
different initial positions. The trajectories are almost vertical to the iso-lines,
as predicted by the gradient ascent.
In all runs the initial Î was set to 0.5, v varied from 0.1 to 0.3. For

��q vY� � � q�W� zXÏ UMDA will converge to the global optimum, for vÑÐ �	� z
Ï UMDA will
converge to the local optimum.
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Figure 1.4
Average fitness ÒÑÓ ÔXÕ for UMDA and FDA for Decep(36,4)

Selection

Proportionate selection allows a mathematical analysis. The equations for
the univariate marginal distributions can be explicitly given. Proportionate
selection is therefore also popular in population genetics. It is considered to
be a model for natural selection.

But proportionate selection has a drawback in practice. It strongly depends
on the fitness values. When the population approaches an optimum, selection
gets weaker and weaker, because the fitness values are similar. Therefore
breeders of livestock have used other selection methods. For large populations
they mainly apply truncation selection. It works as follows. A truncation
threshold Ö is fixed. Then the Ö	× best individuals are selected as parents for
the next generation. These parents are then randomly mated.

We use mainly truncation selection in our algorithms. Another popular
scheme is tournament selection. In tournament selection of size � , � individu-
als are randomly chosen. The best individual is taken as parent. Unfortunately
the mathematics for both selection methods is more difficult. Analytical results
for tournament selection have been obtained in [9].

We model binary tournament selection as a game. Two individuals with
genotype � and Ø “play” against each other. The one with the larger fitness
gets a payoff of 2. If the fitness values are equal, both will win half of the
games. This gives a payoff of 1. The game is defined by a payoff matrix with
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Figure 1.5
Trajectories of UMDA for S-Peak(30,3)

coefficientsv >?Ù � kl m zÚ�-�.� ��Û �-�.Ü �
 �-�.� � �Ý�-�.Ü �� �-�.� � q �-�.Ü �
With some effort one can show thatÆ 7 Æ�Þ /��0� �21 � v >?Ù /��0Ü �21 � � 
 (1.7)

After a round of tournaments the genotype frequencies are given by/ K �.� �41�M8
 � �ß/��0� �21 � Æ�Þ v >?Ù /3�.Ü �41 � � (1.8)

If we setÎ
�.� �21 � � Æ Þ v >�Ù /��0Ü �21 � �
then the above equation is similar to proportionate selection using the functionÎ
�.� �21 � . But Î depends on the genotype frequencies. Furthermore the averageSÎ�� 1 � �à5y/��0� �21 � Î
�.� �21 � remains constant, S Î�� 1 �eá 
 .
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Evolutionary Synthesis of Bayesian Networks for Optimization 9

The difference equations for the univariate marginal frequencies can be
derived in the same manner as for proportionate selection. They are given by

/3� � � �21(M8
 � �ß/�� � � �41 � r S� � � 1 � (1.9)S� � � 1 � � Æ7	â >�<ã= � Îb�0� �21 � �ä åªæ¾çå4èæ < / \ � � \ �21 � o 
 (1.10)

Tournament selection uses only the order relation of the fitness values.
The fitness values themselves do not change the outcome of a tournament.
Therefore the evolution of the univariate marginal frequencies depends on the
order relation only. Tournament selection does not perform gradient ascent on
the average fitness of the population.

The different selection schemes are shown in figure 1.6 for OneMax(128).
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Figure 1.6
Comparison of selection methods for OneMax(128)

For OneMax proportionate selection is very weak. It takes the population
a long time to approach the optimum. In contrast, truncation selection and
tournament selection lead to a much faster convergence. / increases almost
linearly until near the optimum. Truncation selection with éà� �	� Ï behaves
very similarly to tournament selection.

A more complicated problem is the multi-modal function Saw �0xXÏ �2ê^�4�	� ë¢ì �
displayed in figure 1.7. From figure 1.3 we recall that there are two plateaus
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at /F� �	� ê
and /Í� �	� Ï and a local optimum at about /Í� �	�Víbë

. This
structure is reflected both for truncation selection and proportionate selection.
But truncation selection converges much faster. Both selection methods end on
the local optimum /�� �	�Víbë .
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Comparison of selection methods for Saw(36,4,0.85)

The main conclusion of the theory remains valid for all selection schemes.
Evolution is mainly driven by the fitness landscape defined by

U �V/ � . For
proportionate selection this can be theoretically shown. For the other selection
methods an approximate analysis gives the same result. The analysis is based
on the response to selection equationU �|/�� 1LM8
 �4� o U �|/�� 1 �2�eî Î r?ï,ð ��ñP� U �|/�� 1 �4�2�4� (1.11)

The response
U �V/3� 1¢Mh
 �4� o U �|/�� 1 �4� is determined by the fitness distribution,

not the fitness values. In a first approximation it is assumed that the fitness
distribution is normally distributed and can be characterized by the standard
deviation ñP� U �|/�� 1 �2�2� . Îb� 1 � is called realized heritability and

ï�ð
the selection

intensity corresponding to truncation threshold é .
This equation and the selection problem is discussed in detail in [9]. It has

been used to determine an analytical solution for OneMax.
UMDA solves many difficult multi-modal functions. But it can easily

be deceived by a simple function like the deceptive function. The deception
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Evolutionary Synthesis of Bayesian Networks for Optimization 11

problem can be solved by using exact factorizations of the probability. This is
discussed next.

1.3 FDA – The Factorized Distribution Algorithm

For the mathematical analysis we will assume Boltzmann selection. Boltz-
mann selection can be seen as proportionate selection applied to the trans-
formed function òó�.� � �Zô�õ:ö��.÷��-�0� �2� .
Definition: For Boltzmann selection the distribution after selection is given by/ K �.� �41 � �[/�� � �21 � u�ø:ù a >�cU ø (1.12)

where ÷ Û �
is a parameter, also called the inverse temperature, andU ø � 5 /��.� �41 � u�ø¾ù a >?c is the weighted average of the population.

For Boltzmann distributions we have proven a factorization theorem for the
distribution /��0� �21 � and convergence for an algorithm using this factorization
[10]. The proof is simple, because if /3� � �21 � is a Boltzmann distribution with
factor ÷ � and Boltzmann selection is done with factor ÷ � , then /3�.� �21PMÝ
 � �/��.� �41 � is a Boltzmann distribution with factor ÷h��÷ � M ÷ � .
THEOREM 1.1: Let /3�.� �4� � be randomly distributed. Let ÷ � ��������� ÷W+ûú � be
the schedule of the inverse temperature for Boltzmann selection. Then the
distribution is given by/��.� �41 � � u�ø¾ù a 7
cü ø (1.13)

where ÷À� 5 +ûú �� = � ÷ � . ü ø is the partition function
ü ø � 5 7�u�ø:ù a 7
c .

Equation 1.13 is a complete analytical solution of the dynamics. But it
cannot be used for an algorithm. /��0� �21 � consists of z � o 
 variables. Therefore
the amount of computation is exponential. But there are many cases where
the distribution can be factored into conditional marginal distributions each
depending only on a small number of parameters. We recall the definition of
conditional probability.

MIT Press Math6X9/1999/09/15:10:23 Page 11
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Definition The conditional probability /��.�ed Ü � is defined as/3�.�ed Ü � � /��0� � Ü �/3�.Ü � (1.14)

From this definition the following theorem easily follows.

THEOREM 1.2 BAYESIAN FACTORIZATION: Each probability can be fac-
tored into/3�.� � �[/�� � � � �ä� = � /�� � � d /�v � � (1.15)

Proof: By definition of conditional probabilities we have/3�.� � �[/�� �Y��� �ä� = � /�� �^� d �L� ��r�r�r�� ��� ú ��� (1.16)

Let /^v �%ý � � � ��r�r�r�� � � ú � � . If � � and
� � � ��r�r�r�� � � ú � �Êþ /^v � are conditionally

independent given /^v � , we can simplify /�� ��� d �Y� ��r�r�r,� ��� ú ��� �Ñ/�� �^� d /^v ��� .ÿ�� � are called the parents of variable � � . This factorization defines a
directed graph. In the context of graphical models the graph and the conditional
probabilities are called a Bayesian network [5, 2]. The factorization is used by
the Factorized Distribution Algorithm FDA.�����@ STEP 0: Set

1BA �
. Generate DFE �

points randomly.@ STEP 1: Selection@ STEP 2: Compute the conditional probabilities /(Kb� � � d /�v � �21 � using the se-
lected points.@ STEP 3: Generate a new population according to/�� � �21(M8
 � � �ä� = � / K � � � d /�v � �41 �@ STEP 4: If termination criteria is met, FINISH.@ STEP 5: Set

1BAQ1�MZ

. Go to STEP 2.

FDA can be used with an exact or an approximate factorization. It is not
restricted to Bayesian factorization. FDA uses finite samples of points to
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estimate the conditional distributions. Convergence of FDA to the optimum
will depend on the size of the samples.

If the factorization does not contain conditional marginal distributions, but
only marginal distributions, FDA can be theoretically analyzed. The difference
equations of the marginal distributions are of the form given in equation 1.3 [7].

The amount of computation of FDA depends on the size of the popula-
tion ( D ) and the number of variables used for the factors. There exist many
problems where the size of the factors is bounded by

i
independent from f .

In this case FDA is very efficient [8]. But for the function BigJump an exact
factorization needs a factor of size f . Then the amount of computation of FDA
is exponential in f . We have seen before that for BigJump UMDA will already
find the global optimum. Thus an exact factorization is not a necessary condi-
tion for convergence. But it is necessary if we want to be sure that the optimum
is found.

Approximation of the Distribution

The FDA theory needs an exact factorization. In order to use approximate
distributions one can try to formulate the problem as an approximation problem
of distributions. Given a target distribution (the Boltzmann distribution) and a
family of probability models: What is the best approximation of the target
distribution and how can the best approximation be found?

We restrict the discussion to distributions defined by the product of uni-
variate marginal distributions.

Approximation Problem: Given a Boltzmann distribution

/��.� �41 � � u�ø¾ù a 7
cü ø (1.17)

with ÷ Û � . Given approximations �/3�.� �41 � � N �/3� �^� �21 � : Which set of �/3� ��� �21 �
minimizes some distance to the Boltzmann distribution?

A popular measure for estimating the approximation error between distri-
butions is the entropy distance proposed by Kullback and Leibler [6].

Definition: The Kullback Leibler divergence between two distributions is

MIT Press Math6X9/1999/09/15:10:23 Page 13
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defined by�
	 ���/ � / � � Æ 7 �/��0� � r
����� �/��.� �/�� �Y� (1.18)

The KL measure has the following properties@ ��	 ���/ � / � Ð �@ ��	 ���/ � / � � � iff �/��[/
The entropy distance is not symmetric, i.e.

�
	 ���/ � / ���� ��	 �V/ � �/ � . The
entropy distance depends on how close / and �/ are to the boundary. To see
this, note that the term � � M�� � ����� �4� � M�� �©R���� grows to infinity when x goes to
0. Thus the entropy distance can be arbitrarily large while / and �/ differ by

�
.

More generally, the entropy distance is extremely sensitive to small deviations
close to the boundary of the probability simplex.

The above argument indicates that convergence in terms of entropy dis-
tance is harder than convergence in some

	 ) norm. This raises the question
why we should use this measure. A discussion is outside the scope of this pa-
per.

The best approximation minimizes
��	 ���/ � / � . The computation of the best

approximation is very difficult. The topic is still under study. In practice a
different approach is now popular. The approach is based on the theory of
Bayesian networks.

1.4 LFDA - Learning a Bayesian Factorization

Computing the structure of a Bayesian network from data is called learning.
Learning gives an answer to the question: Given a population of selected pointsG½� 1 � , what is a good Bayesian factorization fitting the data? The most difficult
part of the problem is to define a quality measure also called scoring measure.

A Bayesian network with more arcs fits the data better than one with less
arcs. Therefore a scoring metric should give the best score to the minimal
Bayesian network which fits the data. It is outside the scope of this paper to
discuss this problem in more detail. The interested reader is referred to the two
papers by Heckerman and Friedman et al. in [5].

For Bayesian networks two quality measures are most frequently used -
the Bayes Dirichlet (BDe) score and the Minimal Description Length (MDL)
score. We concentrate on the G�� 	

principle. This principle is motivated by
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universal coding. Suppose we are given a set D of instances, which we would
like to store. Naturally, we would like to conserve space and save a compressed
version of D. One way of compressing the data is to find a suitable model for
D that the encoder can use to produce a compact version of D. In order to
recover D we must also store the model used by the encoder to compress D.
Thus the total description length is defined as the sum of the length of the
compressed version of D and the length of the description of the model. TheG�� 	

principle postulates that the optimal model is the one that minimizes
the total description length.

In the context of learning Bayesian networks, the model is a network B
describing a probability distribution / over the instances appearing in the data.
Several authors have approximately computed the G�� 	

score. Let G ��d �Àd
denote the size of the data set. Then G�� 	

is approximately given byG�� 	 ��� � � � �Jo ld � ÿ ��� �2� M G r�� ��� � � � M 
z ÿ�� r
ld �ªG � (1.19)

with ld � ��� �V� ����� � � ��� . ÿ ��� � denotes the prior probability of network � ,ÿ�� �w5 � z â )�� <¡â gives the total number of probabilities to compute.
� ��� � � �

is defined by� �0� � � � �Jo �Æ � = � Æ )
� < Æ > < g � � � � /�v � �G ld

g � � � � /^v � �g �V/�v �ª� (1.20)

where
g � ��� � /�v �û� denotes the number of occurrences of �L� given configuration/^v � . g �V/�v � � �O5Z>?< g � � � � /^v � � . If /^v � ��� , then

g � � � � � � is set to the number
of occurrences of ��� in D.

The formula has an interpretation which can be easily understood. If no
prior information is available,

ÿ �0� � is identical for all possible networks. For
minimizing, this term can be left out.

�	�}ì ÿ�� r
ld ��G � is the length required

to code the parameter of the model with precision

 R G . Normally one would

need
ÿ�� r

ld ��G � bits to encode the parameters. However, the central limit
theorem says that these frequencies are roughly normally distributed with a
variance of G ú � � � . Hence, the higher

�W� ì
ld �ªG � bits are not very useful and

can be left out. o�G r!� ��� � � � has two interpretations. First, it is identical to
the logarithm of the maximum likelihood (ld � 	 ��� d � �2� ). Thus we arrive at the
following principle:

Choose the model which maximizes ld � 	 �0� d � �4� o �� ÿ�� r
ld ��G � .
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16 Heinz Mühlenbein, Thilo Mahnig

The second interpretation arises from the observation that H(B,D) is the
conditional entropy of the network structure � , defined by

ÿ�� � , and the data� . The above principle is appealing, because it has no parameter to be tuned.
But the formula has been derived under many simplifications. In practice, one
needs more control about the quality vs. complexity tradeoff. Therefore we use
a weight factor " . Our measure to be maximized is called � ï$# .� ï%# ��� � � � " � ��o�G r�� �0� � � � o�" ÿ�� r

ld ��G � (1.21)

This measure with "h� �	�}ì has been first derived by Schwarz [13] as Bayesian
Information Criterion.

To compute a network �'& which maximizes � ï$# requires a search
through the space of all Bayesian networks. Such a search is more expen-
sive than to search for the optima of the function. Therefore the following
greedy algorithm has been used.

i É � > is the maximum number of incoming
edges allowed. (*) �+" �-,/.10 7 �@ STEP 0: Start with an arc-less network.@ STEP 1: Add the arc � �Y� � � \ � which gives the maximum increase of BIC( " )
if d ÿ�� \ d:H i É � > and adding the arc does not introduce a cycle.@ STEP 2: Stop if no arc is found.

Checking whether an arc would introduce a cycle can be easily done by
maintaining for each node a list of parents and ancestors, i.e. parents of parents
etc. Then � ���  � \ � introduces a cycle if � \ is ancestor of ��� .

The BOA algorithm of Pelikan [11] uses the BDe score. This measure
has the following drawback. It is more sensitive to coincidental correlations
implied by the data than the G�� 	

measure. As a consequence, the BDe
measure will prefer network structures with more arcs over simpler networks
[1]. The BIC measure with " � 


has also been proposed by Harik [4].
But Harik allows only factorizations without conditional distributions. This
distribution is only correct for separable functions.

Given the BIC score we have several options to extend FDA to LFDA
which learns a factorization. Due to limitations of space we can only show
results of an algorithm which computes a Bayesian network at each generation
using algorithm ��D[� �	�}ì �©i É � > � . FDA and LFDA should behave fairly similar,

MIT Press Math6X9/1999/09/15:10:23 Page 16



Evolutionary Synthesis of Bayesian Networks for Optimization 17

Table 1.1
Numerical results for different algorithms, LFDA with 243�57698;:=<

Function n 6 3 > Succ.% SDev

OneMax 30 UMDA 30 0.3 75 4.3
30 0.25 100 0.3 2 1.4
30 0.5 100 0.3 38 4.9
30 0.75 100 0.3 80 4.0
30 0.25 200 0.3 71 4.5

BigJump(30,3,1) 30 UMDA 200 0.3 100 0.0
30 0.25 200 0.3 58 4.9
30 0.5 200 0.3 96 2.0
30 0.75 200 0.3 100 0.0
30 0.25 400 0.3 100 0.0

Saw(32,2,0.5) 32 UMDA 50 0.5 71 4.5
32 UMDA 200 0.5 100 0.0
32 0.25 200 0.5 41 2.2
32 0.5 200 0.5 83 1.7
32 0.75 200 0.5 96 0.9
32 0.25 400 0.5 84 3.7

Deceptive-4 32 UMDA 800 0.3 0 0.0
32 FDA 100 0.3 81 3.9
32 0.25 800 0.3 92 2.7
32 0.5 800 0.3 72 4.5
32 0.75 800 0.3 12 3.2

S-Peak(15,3,15) 15 UMDA 1000 0.5 75 4.3
15 0.25 1000 0.5 77 4.2
15 0.5 1000 0.5 70 4.6
15 0.75 1000 0.5 76 4.3

if LFDA computes factorizations which are in probability terms very similar
to the FDA factorization. FDA uses the same factorization for all generations,
whereas LFDA computes a new factorization at each step which depends on
the given data M.

We have applied LFDA to many problems [8]. The results are encouraging.
Here we only discuss the functions introduced in Section 1.2. We recall that
UMDA finds the optimum of BigJump, Saw and small instances of S-Peak.
UMDA uses univariate marginal distributions only. Therefore its Bayesian
network has no arcs.

Table 1.1 summarizes the results. For LFDA we used three different values
of " , namely "�� �	� z ì	�4�	�}ì �©�	�Ví
ì . The smaller " , the less penalty for the size
of the structure. Let us discuss the results in more detail. " � �W� z ì gives by far
the best results when a network with many arcs is needed. This is the case for
Deceptive-4. Here a Bayesian network with three parents is optimal. "h� �	� z ì
performs bad on problems where a network with no arcs defines a good search
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18 Heinz Mühlenbein, Thilo Mahnig

distribution. For the linear function OneMax � ï$# � �W� z ì � has only a success
rate of 2%. The success rate can be improved if a larger population size D is
used. The reason is as follows. � ï%# � �	� z ì � allows denser networks. But if a
small population is used, spurious correlations may arise. These correlations
have a negative impact for the search distribution. The problem can be solved
by using a larger population. Increasing the value from D6� 
��¢� to DQ�Ýz �X�
increases the success rate from z%? to

í:
 ? for OneMax.
For Bigjump, Saw and S-Peak a Bayesian network with no arcs is able

to generate the optimum. An exact factorization requires a factor with f
parameters. We used the heuristic �%D with

i É � > � ë
. Therefore the exact

factorization cannot be found. In all these cases "h� �W�}íXì gives the best results.� ï%# � �	�Ví
ì � enforces smaller networks. But � ï%# � �	�Ví
ì � performs very bad on
Deceptive-4. Taking all results together � ï%# � �	�}ì � gives good results. This
numerical results supports the theoretical estimate.

The numerical result indicates that control of the weight factor " can sub-
stantially reduce the amount of computation. For Bayesian network we have
not yet experimented with control strategies. We have intensively studied the
problem in the context of neural networks [15]. The method will be discussed
in section 1.6.

Network Equivalence and Optimality

Many Bayesian networks represent the same probability. These networks are
called equivalent. Let us discuss a simple example./3� �Y� �ß/3� �Y��� /3� � � d �Y��� /3� � � d � � � �Y��� /3� �A@ d � � � (1.22)

The independence structure is shown in figure 1.8.

x2x1 x3 x4

Figure 1.8
Structure of a Bayesian network

It can be proven that the following factorizations describe the same proba-
bility distribution./3� �Y� �ß/3� � � � /3� � � d � � � /3� �Y� d � � � � � � /3� �A@ d � � � (1.23)/3� �Y� �ß/3� � � � /3� � @ d � � � /3� � � d � � � /�� � � d � � � � � � (1.24)
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/�� �Y� �[/�� �B@?� /�� � � d �A@b� /3� � � d � � � /3� �Y� d � � � � � � (1.25)

Furthermore all Bayesian factorizations which contain one of the above factor-
izations also generate the true distribution. We say that � � is contained in � �
if all arcs of � � are also arcs in � � .
THEOREM 1.3: Let �'& be a Bayesian network which generates the data and
has the minimal number of arcs. The G�� 	

score, as well as the BDe score
has the following characteristics.@ As G  DC the true structure �E& maximizes the scores.@ As G  DC the maximal scoring structures are equivalent.

Proof: The proof is technically difficult, we just give an outline. Suppose
network � has an arc not contained in �F& , then for G  DCo�G r
� ��� � � �  o�G r
� ��� & � � � o u r G
where u depends on � . Therefore� ï$# �0� & � � � " � o � ï$# �0� � � � " �  u r G oG" r�HJI �Y�ªG � r �JKX� g �0� & � o�K¢� g �0� �2�
Because G R H+I �L��G �  DC the score of � & is much larger than the score of � .
This proves the first part of the theorem. Now let us assume that �L& has an arc
not contained in � . As G  MC we have o�G rN� �0� � � �  Co�G rN� ���'& � � � .
Therefore� ï$# �0� � � � " � o�� ï$# �0� & � � � " �  O" r+H+I �L��G � r �JKX� g �0� & � oEKX� g �0� �2� (1.26)

But if K¢� g ��� ��Û KX� g �0�E& � then � ï$# �0� � � � " � cannot be maximal.
The above theorem is true for all values of " Û � . For the proof only the termH+I �L��G � is needed. We can now ask if our search algorithm ��D �+" �©i � is able
to find an optimal structure, given enough data. Unfortunately the following
result shows that this cannot be proven in general [1].

Let a probability distribution be given. Then the problem of finding a
Bayesian network with a minimum number of arcs is NP-hard for

i Û 

. If

only trees are allowed, there exists a polynomial algorithm (in the number of
variables).
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Bayesian networks

In this paper we have used Bayesian networks in a new context: to find good
search distributions for an optimization problem. Normally Bayesian networks
are used in a different context: to provide a formalism for reasoning about
partial beliefs under conditions of uncertainty. Therefore Bayesian networks
are also called belief networks. The nodes represent random variables. The
arcs signify the existence of direct causal influences between the variables.
Ultimately the belief network represents a probability distribution over �
having the Bayesian product form.
The following problems are defined over belief networks with fixed structure:

Belief updating: Given a set of observations, compute the posterior probabil-
ity of each proposition.

Missing values: Given some observed variables, find a maximum probability
assignment to the rest of the variables.

Creating hypothesis: Given some evidence, find an assignment to a subset of
hypothesis variables that maximizes their probability.

In general these tasks are NP-hard. But they permit a polynomial propa-
gation algorithm for tree networks. The above tasks will be discussed in the
context of neural networks in section 1.6. Next we will investigate genetic pro-
gramming.

1.5 Synthesis of Programs

Salustewicz and Schmidhuber [12] have proposed a method for the synthesis
of programs bases on probabilities. This method is very similar to the methods
discussed in this paper. Therefore we summarize the major concepts of the
method. In their method programs are generated according to a probabilistic
prototype tree (PPT).

A program contains instructions chosen from a set of functions ò �� � � � � � ��������� �QP � and a terminal set R6� ��1 � �41 � �������21NS*� . Functions have one
or more arguments, terminals have no argument. The terminal set consists of
input variables ��� and a generic random constant " �UT �WV�
 � which will be
changed during the run.

Programs are encoded in
g

-ary trees with
g

being the maximum number
of function arguments. Each non-leaf node encodes a function from ò and
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each leaf node a terminal from R . The number of subtrees that each node
has corresponds to the number of arguments for its function. The Probabilistic
Prototype Tree (PPT) is generally a complete

g
-ary tree. At each node DFX 9 Y it

contains a probability vector / X 9 Y and a random constant " X 9 Y . d denotes the
depth of the node and w defines the node’s horizontal position. PPT is parsed
from top to bottom and left to right. The probability vector / X 9 Y has �B� HWMni
elements. Each element / X 9 Y � ï � denotes the probability of choosing instructionï � ò[ZLR at D*X 9 Y .

A program PROG is generated from PPT in the following way. An instruc-
tion

ï )
\©'-] at node D*X 9 Y is selected with probability /^X 9 Y � ï )=\j'-] � . If
ï )
\j'_] � ò ,

a subtree is created for each argument of
ï )
\j'_] . If

ï )
\j'_] � R the selected in-
put variable or a constant is put at the program tree. Therefore a program is
generated with probability/�� ÿ " tG` � � äX 9 Y / X 9 Y � ï )
\j'_] � (1.27)

Thus the algorithm uses univariate marginal distributions.
ï )=\j'-] is not a

binary variable, but has i distinct values. Therefore our theory developed in
the first sections can be applied. We have yet to define a fitness. Normally the
program gets only examples �0� \ � Ü \ � . A measure of the goodness of a program
is given bya�b I!c u:� ÿ " tG` � � Æ \ d Ü \ o ÿ " tG` �.� \ � d (1.28)

The quadratic score popular with neural networks can be used instead.
The presented model is very similar to UMDA. The only extension is the

usage of a probabilistic tree instead of a probabilistic string. Each probabilistic
variable has

H-Mwi
elements. Using only univariate marginal distributions is

obviously a very crude approximation for the problem domain considered.
An extension to conditional marginal distributions seems necessary. In a first
approximation each node at layer

iÂMà

can be conditioned on its parent node

at layer
i

. For tree networks very efficient algorithms exist which determine
the optimal structure. This proposal needs further study.

1.6 Neural Trees

Bayesian networks are founded on probability theory. The problem of deter-
mining the optimal parameters of a Bayesian network given the data is solved
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by probability theory. The optimal parameter are just the empirical frequencies
of the conditional marginal distributions. There also exist powerful heuristics
like ��D[�J" � which change the structure of a Bayesian network to better fit the
data.

For general neural networks like the famous multilayer perceptron the
situation is much more difficult. The determination of the optimal parameters
(called weights) is difficult. Special algorithms have been developed for this
problem. In addition there exist no heuristics backed up by theory which adapt
the structure.

In principle Bayesian networks can also be used in the domain of neural
networks: to learn a function �� Ü �F�-�0� � . The mapping �0� � Ü � can be
represented by a conditional probability distribution /��0Ü d � � . But during the
training Ü will depend on all variables of � or of the variables of a hidden
layer. This means that the number of parents used for Bayesian factorization
is f . Thus the amount of computation is of order

t �ªz � � making this approach
obsolete.

Currently two paths are followed to attack this problem. The first path
restricts the class of neural networks. There exist a subclass of neural networks
called sigmoid belief networks which allow a probabilistic interpretation. The
interconnection structure of the belief networks has to be restricted to trees in
order that the algorithms invented for Bayesian networks can be applied.

We have experimented with neural trees. Here the neurons are complex,
but the structure is restricted to trees. Because the neurons are complex, we
do not yet have a probabilistic interpretation of neural trees. Therefore we are
faced with two problems: to determine the optimal weights for a structure and
to find the optimal structure.

Let dfe��JK � Î � denote the set of all possible trees of maximum depth K and
maximum number of branches for each node Î . The nonterminal nodes repre-
sent (formal) neurons and the neuron type is an element of the basis function
set g�� ��h ô
iAj ��hGk_l ö�ô�m � . Each terminal node is labeled with an element from
the terminal set e®� � ��� � � � ��������� ��� � , where ��� is the � th component of the
external input � . Each link �.� �;n � represents a directed connection from node �
to node

n
and is associated with a value o � 9 \ , called synaptic weight. The mem-

bers of dfe¦�JK � Î � are referred to as neural trees. The root node is also called the
output unit and the terminal nodes are called input units. The rest are hidden
units. The layer of a node is defined as the longest path length among the paths
to the terminal nodes of its subtree.

Different neuron types compute different net inputs. For the evolution
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of higher-order networks, we consider two types of units. The sigma units
compute the sum of weighted inputs from the lower layer:f�u 1 � � Æ \ o � \�pb\ (1.29)

where pb\ are the inputs to the � th neuron. The pi units compute the product of
weighted inputs from the lower layer:f�u 1 � � ä \ o � \ p \ (1.30)

where p \ are the inputs to � . The output of the neurons is computed either by
the threshold response functionp � �ZñP�0f�u 1 � � � q 
 � f�u 1 � Ð �o 
 � f�u 1 � q�� (1.31)

or the sigmoid transfer functionp � �8�-�0f�u 1 ��� � 

 M u ú ��r + < (1.32)

where f�u 1 � is the net input to the unit.
A higher-order network with

g
output units can be represented by a a list

of
g

neural trees. That is, the genotype
� � of � th individual in our evolutionary

framework consists of
g

sigma-pi neural trees:� � ��� � � 9 � � � � 9 � ��������� � � 9 ÉÊ�ts i � �¾
X�������,�4gÀ�¾� � � 9 P � dfe �+K � Î � (1.33)

These neural networks are called sigma-pi neural trees. The neural tree
representation does not restrict the functionality since any feed-forward net-
work can be represented with a forest of neural trees. The connections between
input units to arbitrary units in the network is also possible since input units
can appear more than once in the neural tree representation. The output of one
unit can be used as input to more than one unit in the upper layers by using
them more than once.

Searching for the Best Structure

The structural adaptations alter the topology, size, depth, and shape of neural
networks: the first three are changed by crossover and the last by mutations.

As with other genetic programming methods, the crossover operation is
in essence performed by exchanging subtrees of parent individuals. Because
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of the uniformity of the neural tree representation, no syntactic restriction is
necessary in choosing the crossover points. Instead of producing two offspring,
we create only one, which allows a guided crossover by subtree evaluation.
From two parent individuals

�
and � , the offspring

#
is generated by the

following procedure:

1. Select a subtree v of
�

at random or one that has poor local fitness value.

2. Select a subtree Î of � at random or one that has good local fitness value.

3. Produce an offspring
#

by copying
�

and replacing v with Î .
The local fitness is measured by a combination of the error and size of

the subtrees. Other criteria for subtree evaluation proposed in the literature
include the error of the subtree, error difference, frequency of subtrees, use of
the average fitness of population, correlation-based selection, combination of
frequency and error difference [15]. Mutation and adding of library functions
is also discussed there.

1.7 G�� 	
-Based Fitness Function

The goal is to find a neural tree or model
�

whose evaluation �%u��.� � best
approximates the unknown relation Ü �Ý�-�.� � given an input � . The goodness
of the program for the dataset � is measured by the quadratic errorv � � d � � � 
D wÆ x = � ��Ü x oß�yu��.� x �4� � � (1.34)

where D is the number of training examples.
We can now apply the G�� 	

principle as before. The data consists of
examples �0� � Ü � . In general, however, the distribution of the examples is un-
known and the exact formula for the fitness function is impossible to obtain.
Therefore we propose to approximate G�� 	

byG�� 	 � � � � � � v � � d � � M " # � � � � (1.35)

where the parameter " controls the trade-off between complexity
# � � � and

fitting error
v �+�Àd � � of the neural tree.

Now we describe a heuristic that controls " . Care must be taken in ap-
plying the G�� 	

principle to neural trees so that redundant structures should
be pruned as much as possible, but at the same time premature convergence
should be avoided. Avoiding the loss of diversity is especially important in the
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early stages, while strong pruning is desirable to get parsimonious solutions
and improve generalization performance in the final stage.

To balance the parsimony with accuracy dynamically, we fix the error
factor at each generation and change the complexity factor adaptively with
respect to the error. Each individual of our population consists of a neural
tree. Let

v � � 1 � and
# � � 1 � denote the error and complexity of � th individual

at generation
1
. The complexity of neural trees can be measured as the sum of

the units, weights, and layers. The fitness of an individual � at generation
1

is
defined as follows:ò � � 1 � � v � � 1 � M " � 1 � # � � 1 � � (1.36)

where
� H v � � 1 � H 
[z�hA{|# � � 1 ��Û � is assumed.

We control " � 1 � as follows" � 1 � �~} �w����^�����+� a|+ûú
� c�� �+�J�J� a³+ c if

v�� r K +�� 1 o 
 � Û ��w � �
�^�����+� a|+ûú

� c;� �� �����+� a|+ c otherwise
� (1.37)

where D is the size of training set. User-defined constant
�

specifies the
maximum training error allowed for the final solution.

Note that " � 1 � depends on
v � r K + � 1 o 
 � and �# � r K + � 1 � . v � r K + � 1 o 
 � is

the error value of the program which had the smallest (best) fitness value
at generation

1 o 
 . �# � r K + � 1 � is the size of the best program at generation
1

estimated at generation
1 o 
 . It is computed as follows�# � r K + � 1 � � # � r K + � 1 o 
 � M��E# K_� É � 1 o 
 � (1.38)

where
�*# KN� É is a moving average that keeps track of the difference in the

complexity between the best individual of one generation and the best individ-
ual of the next:�*# KN� É � 1 � � �W� ì È # � r K + � 1 � o # � r K + � 1 o 
 � M��E# KN� É � 1 o 
 �2Ì (1.39)

with
�E# KN� É � � � � �

(see [14] for more details). �# � r K +,� 1 � is used for the
normalization of the complexity factor. In essence, two adaptation phases
are distinguished. When

v�� r K +,� 1 o 
 ��Û �
, "�� 1 � decreases as the training

error falls since
v � r K + � 1 o 
 � H 


is multiplied. This encourages fast error
reduction at the early stages of evolution. For

v � r K + � 1 o 
 � H �
, in contrast,

as
v1� r K +,� 1 � approaches

�
the relative importance of complexity increases due

to the division by a small value
v � r K + � 1 o 
 ��� 


. This encourages stronger
complexity reduction at the final stages to obtain parsimonious solutions.
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Numerical results of this method can be found in [15].

1.8 Conclusion

Our theory of evolutionary algorithms has shown that their dynamic behavior
can best be explained by the fitness distribution defined by /3�.� � and not by
the fitness landscape �-�0� � . Many evolutionary algorithms are doing gradient
ascent on the landscape defined by the average fitness

U �V/ � . We have shown
that genetic algorithms can be approximated by evolutionary algorithms us-
ing probability distributions. The theory leads to a synthesis problem: finding
a good factorization for the search distribution. This problem lies in the cen-
ter of probability theory. For Bayesian networks numerical efficient algorithms
have been developed. We have discussed the algorithm LFDA in detail, which
computes a Bayesian network by minimizing the Bayesian Information Crite-
rion.

We have outlined how the theory might be used to synthesize programs
from probabilistic prototype trees. The advantage of this approach is its backup
by a solid theory. In order to be numerical efficient, additional research is
necessary.

Synthesis of complex neural networks is still outside this theory. Here
two solutions seem possible: either Bayesian networks are extended to the
application domain of neural networks or the structure of neural networks is
restricted so that it can be handled in a Bayesian framework.
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