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Abstract. First we come to the conclusion that all genetic algorithms can be approxi-

mated by an algorithm which keeps the population in linkage equilibrium. Here the genetic

population is given as a product of univariate marginal distributions. We describe a sim-

ple algorithm which keeps the population in linkage equilibrium. It is called the Univari-

ate Marginal Distribution Algorithm (UMDA). Our main result is that UMDA transforms

the discrete optimization problem into a continuous one defined by the average fitness

W̃(p1, . . . , pn) as a function of the univariate marginal distributions pi . For proportionate

selection UMDA performs gradient ascent in the landscape defined by W( p). We derive a

difference equation for pi which has already been proposed by Wright in population ge-

netics. We show that UMDA solves difficult multimodal optimization problems. But for

functions with highly correlated variables it has to be extended to marginal and conditional

distributions. The Factorized Distribution Algorithm (FDA) uses a general factorization

of the distribution. For decomposable functions the optimal factorization can be explicitly

computed. In general it has to be computed from the data. Each distribution can be repre-

sented as a Bayesian network. Computing the structure from the data is called learning in

Bayesian network theory. The problem of finding a minimal structure which explains the

data is discussed in detail. It is shown that the Bayesian Information Criterion is a good

score for this problem. This is used by the algorithm LFDA.
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1 Introduction

Simulating evolution as seen in nature has been identified as one of the key com-

puting paradigms for the next decade. Today evolutionary algorithms have been

successfully used in a number of applications. These include discrete and contin-

uous optimization problems, synthesis of neural networks, synthesis of computer

programs from examples (also called genetic programming) and even evolvable
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hardware. But in all application areas problems have been encountered where evo-

lutionary algorithms performed badly. Therefore a mathematical theory of evolu-

tionary algorithms is urgently needed. Theoretical research has evolved from two

opposed ends: from the theoretical approach there are theories emerging that are

getting closer to practice; from the applied side ad hoc theories have arisen that

often lack theoretical justification.

In this chapter we concentrate on evolutionary algorithms for optimization. Here

results from classical population genetics and statistics can be used. The outline

of the chapter is as follows. In section 2 we summarize research which indicates

that all simple genetic algorithms can be approximated by an algorithm keeping the

population in linkage equilibrium. The simplest algorithm keeping the population

in linkage equilibrium is the Univariate Marginal Distribution Algorithm UMDA.

UMDA uses search distributions instead of recombination. Its mathematical analysis

is done in section 3.

In section 4 we shortly survey algorithms using univariate marginal distributions.

The mathematical behavior of UMDA with proportionate selection is described by

a differential equation called the replicator equation. This equation is discussed

in section 5. Then numerical results for UMDA are presented. They confirm that

UMDA is able to solve difficult multimodal optimization problems. Certain op-

timization problems need marginal distributions of higher order. The Factorized

Distribution Algorithm FDA uses a general factorization of the distribution. It is

introduced in section 7.

The mathematical theory of UMDA and FDA is based on infinite populations. The

problem of finite samples is discussed in section 8. In the final section LFDA is

introduced. This algorithm computes a plausible factorization of the search distri-

bution from a finite sample of data.

2 The Simple Genetic Algorithm

In this section we discuss the standard genetic algorithm, also called the Simple Ge-

netic Algorithm (SGA). The algorithm is described by Holland [12] and Goldberg

[9]. It consists of

• fitness proportionate selection
• recombination/crossover
• mutation

In this section we will analyze selection and recombination only. Mutation is con-

sidered to be a background operator. It can be analyzed by known techniques from

stochastics [21,18]. We will investigate two widely used recombination/crossover

schemes.

Definition 1. Let two strings x and y be given. In one-point crossover the string z
is created by randomly choosing a crossover point 0 < l < n and setting zi = xi for
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i ≤ l and zi = yi for i > l. In uniform crossover zi is randomly chosen with equal

probability from {xi, yi}.

Let x = (x1, . . . , xn) denote a binary vector. For notational simplicity we restrict

the discussion to binary variables xi ∈ {0, 1}. We use the following conventions.

Capital letters Xi denote variables, small letters xi assignments. Let a function f :
X → R≥0 be given. We consider the optimization problem xopt = argmaxf (x).

Definition 2. Let p(x, t) denote the probability of x in the population at generation

t . Then p(xi , t) =
∑

x,Xi=xi
p(x, t) defines a univariate marginal distributions.

We write p(xi) if just one generation is discussed. In this notation the average fitness

of the population and the variance is given by

f̄ (t) =
∑

x

p(x, t)f (x),

V (t) =
∑

x

p(x, t)
(

f (x) − f̄ (t)
)2

.

The response to selection R(t) is defined by

R(t) = f̄ (t + 1) − f̄ (t). (1)

2.1 Proportionate Selection

Proportionate selection changes the probabilities according to

p(x, t + 1) = p(x, t)
f (x)

f̄ (t)
. (2)

Lemma 1. For proportionate selection the response is given by

R(t) = V (t)

f̄ (t)
. (3)

Proof. We have

R(t) =
∑

x

p(x, t)
f 2(x)

f̄ (t)
− f̄ (t)

=
∑

x

p(x, t)
f 2(x) − f̄ 2(t)

f̄ (t)

= V (t)

f̄ (t)
.

With proportionate selection the average fitness never decreases. This is true for

every selection scheme.



4 H. Mühlenbein and Th. Mahnig

2.2 Recombination

For the analysis we introduce a special distribution, called Robbins’ proportions.

Definition 3. Robbins’ proportions are given by the distribution π ,

π(x, t) :=
n
∏

i=1

p(xi , t). (4)

A population in Robbins’ proportions is called to be in linkage equilibrium in pop-

ulation genetics.

Geiringer [8] has shown that all reasonable recombination schemes lead to the same

limit distribution.

Theorem 1 (Geiringer). Recombination does not change the univariate marginal

frequencies, i.e., p(xi , t + 1) = p(xi, t). The limit distribution of any complete

recombination scheme is Robbins’ proportions π(x).

Complete recombination means that for each subset S of {1, . . . , n}, the probability

of an exchange of genes by recombination is greater than zero. Convergence to the

limit distribution is very fast. We will prove this for n = 2 loci.

Theorem 2. Let D(t) = p(0, 0, t)p(1, 1, t) − p(0, 1, t)p(1, 0, t). If there is no

selection then we have for two loci and uniform crossover

D(t) = (−1)|x|2(p(x, t) − p1(x1, 0)p2(x2, 0)
)

. (5)

Furthermore the factor D(t) is halved each generation,

D(t + 1) = 1

2
D(t). (6)

Proof. Without selection the univariate marginal frequencies are independent of t ,

because in an infinite population a recombination operator does not change them.

Then from

p(1, 1, t) − p1(1, 0)p2(1, 0)

= p(1, 1, t) −
(

p(1, 0, t) + p(1, 1, t)
)(

p(0, 1, t) + p(1, 1, t)
)

= p(1, 1, t) − p(0, 1, t)p(1, 0, t) − p(1, 1, t)(1 − p(0, 0, t)),

we obtain

D(t) = p(1, 1, t) − p1(1, 0)p2(1, 0).
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This gives (5) for x = (1, 1). The other cases are proven in the same way.

The gene frequencies after recombination are obtained as follows. We only consider

p(1, 1, t). The probability of p(1, 1, t + 1) can be computed from the probability

that recombination generates string (1, 1). The probability is given by

p(1, 1, t + 1) = p(1, 1, t) ·
(

1
2
p(0, 0, t) + p(0, 1, t) + p(1, 0, t) + p(1, 1, t)

)

+
1

2
p(0, 1, t)p(1, 0, t)

= p(1, 1, t) − 1
2

(

p(1, 1, t)p(0, 0, t) − p(0, 1, t)p(1, 0, t)
)

= p(1, 1, t) + (−1)|x|2+1 1

2
D(t).

By computing D(t + 1), (6) is obtained.

We will use as a measure for the deviation from Robbins’ proportions the mean

square error DSQ(t),

DSQ(t) =
∑

x

(

p(x, t) − p1(x1)p2(x2)
)2

. (7)

From the above theorem we obtain:

Corollary 1. For two loci the mean square error is reduced each step by one fourth,

DSQ(t + 1) = 1

4
DSQ(t).

For more than 2 loci the equations for uniform crossover and one-point crossover

get more complicated. Uniform crossover converges faster to linkage equilibrium,

because it mixes the genes much more than one-point crossover.

Table 1 gives numerical results for n = 8 loci. For the initial probabilities q0 =
q7 = 0.5 linkage equilibrium is given by qi = 1/8. One-point crossover converges

slowly to linkage equilibrium, uniform crossover converges very fast.

We have to mention an important fact. In a finite population linkage equilibrium

cannot be exactly achieved. We take the uniform distribution as example. Here link-

age equilibrium is given by p(x) = 2−n. This value can only be obtained if the

size of the population N is substantially larger than 2n ! The finite size effect is

demonstrated in table 2. There the numerical value for DSQ(t) is shown for dif-

ferent population sizes. In addition c = DSQ(t + 1)/DSQ(t) is displayed. From

theorem 2 a factor of c = 0.25 is expected.

For a population of N = 1000 the minimum deviation DSQmin from Robbins’ pro-

portions is already achieved after four generations, then DSQ slowly increases due

to stochastic fluctuations by genetic drift. Ultimately the population will consist of

one genotype only. Genetic drift has been analyzed by Asoh & Mühlenbein [1]. It

will not be considered here.
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t q0 q1 q2 q0 − 1/28 q1 − 1/28 q2 − 1/28

0 0.5 0.0 0.0 0.4961 -3.906E-3 -3.906E-3

1 0.3774 0.0177 0.0 0.3735 1.369E-2 -3.906E-3

2 0.2879 0.0262 0.0012 0.2840 2.229E-2 -2.706E-3

3 0.2225 0.0303 0.0028 0.2186 2.639E-2 -1.106E-3

4 0.1768 0.0314 0.0042 0.1729 2.749E-2 +0.294E-3

5 0.1421 0.0298 0.0050 0.1382 2.589E-2 +1.094E-3

0 0.5 0.0 0.0 0.4961 -3.906E-3 -3.906E-3

1 0.2533 0.0020 0.0023 0.2494 -1.927E-3 -1.646E-3

2 0.0895 0.0097 0.0101 0.0856 +5.834E-3 +6.174E-3

3 0.0323 0.0093 0.0102 0.0283 +5.434E-3 +6.244E-3

4 0.0148 0.0074 0.0072 0.0108 +3.574E-3 +3.254E-3

5 0.0090 0.0057 0.0056 0.0051 -1.794E-3 +1.794E-3

Table 1. Comparison of convergence to Robbins’ proportions for n = 8 loci, one-point (up-

per half) and uniform crossover, q0 = p(0, . . . , 0), q1 = p(0, . . . , 1), q2 = p(0, . . . , 1, 0),

population size N = 1000, averages over 100 runs; q0 = q7 = 0.5.

N = 1000 N = 10000 N = 20000

t DSQ c DSQ c DSQ c

0 9.00E-2 9.00E-2 9.00E-2

1 2.28E-2 0.25 2.25E-2 0.25 2.25E-3 0.25

2 6.37E-3 0.28 5.77E-3 0.25 5.59E-3 0.25

3 2.34E-3 0.37 1.55E-3 0.27 1.45E-3 0.26

4 1.62E-3 0.70 4.96E-4 0.32 4.24E-4 0.29

5 1.91E-3 1.03 2.43E-4 0.49 1.67E-4 0.39

8 2.62E-3 1.13 2.25E-4 1.10 1.41E-4 1.10

Table 2. Convergence to linkage equilibrium for n = 2 loci.

2.3 Selection and Recombination

We have shown that the average f̄ (t) never decreases after selection and that any

complete recombination scheme moves the genetic population to Robbins’ propor-

tions. Now the question arises: what happens if recombination is applied after se-

lection? The answer is very difficult. The problem still puzzles populations genetics

researchers [23].

Formally the difference equations can be written compactly. Let a recombination

distribution R be given. Rx,yz denotes the probability that y and z produce x after

recombination. Then

p(x, t + 1) =
∑

y,z

Rx,yzp
s(y)ps(z). (8)
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ps(x) denotes the probability of string x after selection. For n loci the recombination

distribution R consists of 2n×2n parameters. Recently Christiansen and Feldman [4]

have written a survey about the mathematics of selection and recombination from

the viewpoint of population genetics. A new technique to obtain the equations has

been developed by Vose [31]. In both frameworks one needs a computer program to

compute the equations for a given fitness function.

We discuss the problem for a special case only, uniform crossover for n = 3 loci.

For notational convenience we use the integer representation ix for x. Furthermore

we set qix := p(x). In the next theorem we only give the equations for q7 and q3.

From these expressions the reader can extrapolate the remaining five equations.

Theorem 3. For proportionate selection and uniform crossover the probabilities

are given by

q7(t + 1) = q7(t)
f7

f̄ (t)
+ 1

f̄ (t)2

(

−1

2
f7q7(f1q1 + f2q2 + f4q4) − 3

4
f7q7f0q0

+ 1

2
(f3q3f5q5 + f3q3f6q6 + f5q5f6q6)

+ 1

4
(f1q1f6q6 + f2q2f5q5 + f3q3f4q4)

)

and

q3(t + 1) = q3(t)
f3

f̄ (t)
+ 1

f̄ (t)2

(

−1

4
f3q3(f0q0 + f5q5 + f6q6) − 3

4
f3q3f4q4

+ 1

2
(f1q1f7q7 + f2q2f7q7 + f1q1f2q2)

+ 1

4
(f0q0f7q7 + f1q1f6q6 + f2q2f5q5)

)

.

Proof. We outline the proof. After proportionate selection and recombination we

obtain

q7(t + 1) = q7(t)
f7

f̄ (t)2

(

7
∑

j=1

2R7,7jqj (t)fj − q7f7

)

+ rest,

rest =
∑

i 6=7,j 6=7

R7,ijqi(t)
fi

f̄ (t)
qj (t)

fj

f̄ (t)
.

For uniform crossover we compute R7,70 = 1/8,R7,71 = R7,72 = R7,74 = 1/4,

R7,73 = R7,75 = R7,76 = 1/2. Inserting these numbers and rearranging the terms

we obtain

q7(t + 1) = q7(t)
f7

f̄ (t)
+ 1

f̄ (t)2

(

−1

2
f7q7(f1q1 + f2q2 + f4q4) − 3

4
f7q7f0q0

)

+ rest.

The term rest is computed in the same way.
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We have split the difference equation into the selection term and a recombination

term. The recombination term consists of two terms: the probabilities that x will be

reduced by recombination with other genotypes and the probabilities that recombi-

nation of two strings different from x will produce string x. A mathematical analysis

of the mathematical properties of 3 loci systems is difficult. But we easily obtain an

interesting result for a special case.

Definition 4. A fitness function is called multiplicative if

f (x) = C ·
∏

i

eaixi . (9)

We easily obtain from theorem 3 the following corollary. The proof is left to the

reader.

Corollary 2. If the fitness function is multiplicative, if the population is in linkage

equilibrium, and if the assumptions of theorem 3 are valid, then the population re-

mains in linkage equilibrium and the probabilities are given by (2).

We conjecture that the corollary is true for arbitrary n. It seems to be known in pop-

ulation genetics, but we have not found a proof. Unfortunately for all other fitness

functions selection and recombination leads to linkage disequilibrium.

The question is whether linkage disequilibrium is important for evolutionary op-

timization. The answer is no. We provide evidence for this statement by citing a

theorem from [18]. It describes the difference equations for the univariate marginal

frequencies.

Theorem 4. For any complete recombination/crossover scheme used after propor-

tionate selection, the univariate marginal frequencies are determined by

p(xi , t + 1) =
∑

x|Xi=xi

p(x, t)f (x)

f̄ (t)
. (10)

Proof. After selection the univariate marginal frequencies are given by

ps(xi, t) =
∑

x|Xi=xi

ps(x, t) =
∑

x|Xi=xi

p(x, t)f (x)

f̄ (t)
.

Now the selected individuals are randomly paired. Since complete recombination

does not change the allele frequencies, these operators do not change the univariate

marginal frequencies. Therefore

pi(xi, t + 1) = ps(xi, t).
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This theorem can be formulated in the terms of Holland’s schema theory[12]. Let

H(xi) = (∗, . . . , ∗, xi , ∗, . . . , ∗) be a first-order schema at locus i. This schema

includes all strings where the gene at locus i is fixed to xi . The univariate marginal

frequency p(xi , t) is obviously identical to the frequency of schema H(xi). The

fitness of the schema at generation t is given by

f (H(xi), t) = 1

p(xi, t)

∑

x|Xi=xi

p(x, t)f (x). (11)

From theorem 4 we obtain:

Corollary 3 (First-order schema theorem). For a genetic algorithm with propor-

tionate selection using any complete recombination, the frequency of first-order

schemata changes according to

pi(xi, t + 1) = pi(xi, t)
f (H(xi), t)

f̄ (t)
. (12)

Note that the above corollary is valid for an infinite population with proportionate

selection and recombination. Holland’s famous schema theorem implies for first

order schemata only an inequality [12]:

pi(xi, t + 1) ≥ pi(xi, t)
f (H(xi), t)

f̄ (t)
.

We summarize the results. All complete recombination schemes lead to the same

univariate marginal distributions after one step of selection and recombination. If

recombination is used for a number of times without selection, then the genotype

frequencies converge to linkage equilibrium. This means that all genetic algorithms

are identical if after after one selection step recombination is done without selec-

tion a sufficient number of times. This fundamental algorithm keeps the population

in linkage equilibrium. In the next section we will characterize the fundamental al-

gorithm.

3 UMDA – The Univariate Marginal Distribution Algorithm

Instead of performing recombination a number of times in order to converge to

linkage equilibrium, one can achieve this in one step by gene pool recombination

[22]. In gene pool recombination a new string is computed by randomly taking

for each loci a gene from the distribution of the selected parents. This means that

gene xi occurs with probability ps(xi) in the next population, where ps(xi) is the

distribution of xi in the selected parents. Thus new strings x are generated according

to the distribution

p(x, t + 1) =
n
∏

i=1

ps(xi, t). (13)
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One can simplify the algorithm still more by directly computing the univariate

marginal frequencies from the data. Then (13) can be used to generate new strings.

This method is used by the Univariate Marginal Distribution Algorithm (UMDA).

UMDA

STEP 0: Set t ⇐ 1. Generate N � 0 points randomly.

STEP 1: Select M ≤ N points according to a selection method. Compute the

marginal frequencies ps(xi, t) of the selected set.

STEP 2: Generate N new points according to the distribution

p(x, t + 1) =
∏n

i=1 ps(xi, t). Set t ⇐ t + 1.

STEP 3: If termination criteria are not met, go to STEP 1.

UMDA formally needs 2n parameters, the marginal distributions p(xi). We consider

f̄ (t) as a function which depends on p(xi). To emphasize this dependency we write

W(p(x1 = 0), p(x1 = 1), . . . , p(xn = 1)) := f̄ (t). (14)

W formally depends on 2n parameters; p(xi = 1) and p(xi = 0) are considered as

two independent parameters despite the constraint p(xi = 0) = 1 − p(xi = 1). We

abbreviate pi := p(xi = 1). If we insert 1 −pi for p(xi = 0) into W , we obtain W̃ .

W̃ depends on n parameters. Now we can formulate the main theorem.

Theorem 5. For infinite populations and proportionate selection the difference equa-

tions for the gene frequencies used by UMDA are given by

p(xi , t + 1) = p(xi, t)
f̄i (xi, t)

W(t)
, (15)

where f̄i(xi, t) =
∑

x,Xi=xi
f (x)

∏n
j 6=i p(xj , t). The equations can also be written

as

p(xi , t + 1) = p(xi, t) + p(xi, t)

∂W
∂p(xi)

− W(t)

W(t)
, (16)

pi(t + 1) = pi(t) + pi(t)(1 − pi(t))

∂W̃
∂pi

W̃ (t)
. (17)

Proof. Equation (15) has been proven in [18]. Equation (16) directly follows. We

only have to prove (17). Note that

pi(t + 1) − pi(t) = pi(t)
f̄i (xi = 1, t) − W̃ (t)

W̃ (t)
.
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Obviously we have

∂W̃

∂pi

= f̄ (xi = 1, t) − f̄ (xi = 0, t).

From

pi(t)f̄i(xi = 1, t) + (1 − pi(t))f̄i (xi = 0, t) = W̃ (t),

we obtain

f̄ (xi = 1, t) − W̃ (t) − (1 − pi(t))f̄ (xi = 1, t) + (1 − pi(t))f̄ (xi = 0, t) = 0.

This gives

f̄i(xi = 1, t) − W̃ (t) = (1 − pi(t))
∂W̃

∂pi

.

Inserting this equation into the difference equation gives (17).

The above equations completely describe the dynamics of UMDA with proportion-

ate selection. Mathematically, UMDA performs gradient ascent in the landscape

defined by W or W̃ .

Corollary 4. UMDA solves the continuous optimization problem argmax W̃ ( p) on

the unit cube [0, 1]n. The continuous problem is an extension of the discrete opti-

mization problem argmaxf (x).

Equation (17) is especially suited for theoretical analysis. It has first been proposed

by Wright [32]. Wright’s remarks are still valid today: “The appearance of this for-

mula is deceptively simple. Its use in conjunction with other components is not such

a gross oversimplification in principle as has sometimes been alleged . . . Obvi-

ously calculations can be made only from rather simple models, involving only a

few loci or simple patterns of interaction among many similarly behaving loci . . .

Apart from application to simple systems, the greatest significance of the general

formula is that its form brings out properties of systems that would not be apparent

otherwise.”

The restricted application lies in the following fact. In general the difference equa-

tions need the evaluation of 2n terms. The computational complexity can be drasti-

cally reduced if the fitness function has a special form. This is discussed next.

3.1 Computing the Average Fitness

In mathematical terms the discrete optimization problem with variables x is trans-

formed into a continuous optimization problem with variables p. We will take a



12 H. Mühlenbein and Th. Mahnig

closer look on this transformation. For notational convenience, we introduce a multi-

index α = (α1, . . . , αn), and define

xα :=
∏

i

x
αi

i .

Definition 5. The representation of a binary discrete function using the ordering

according to function values is given by

f (x) = f (0, . . . , 0)(1 − x1) · · · (1 − xn) + · · · + f (1, . . . , 1)x1 · · · xn. (18)

The representation using the ordering according to variables is

f (x) =
∑

α

aαxα. (19)

max{|α|1 : aα 6= 0} is called the order of the function.

In both representations the function is linear in each variable xi . The following two

lemmas are obvious.

Lemma 2. The two representations are unique. There exist a unique matrix A of

dimension 2n × 2n such that

aα = (Af )α .

Lemma 3. W̃ (p) := f̄ (t) is an extension of f (x) to the unit cube [0, 1]n. There

exist two representations for W̃ (p), given by

W̃ (p) = f (0, . . . , 0)(1 − p1) · · · (1 − pn) + · · · + f (1, . . . , 1)p1 · · · pn (20)

W̃ (p) =
∑

α

aαpα . (21)

Equation (21) can also be used to compute the derivative. It is given by

∂W̃ (p)

∂pi

=
∑

α|αi=1

aαpα′
, (22)

with α′
i = 0, α′

j = αj . If the function is of a low order, the partial derivatives

can be easily evaluated. This allows to compute the difference equations for pi .

In special cases the difference equation can even be solved analytically. We will

discuss examples later. First we have to show that proportionate selection has a

serious drawback, both for breeding of livestock as well for evolutionary algorithms.

It selects too weakly for optimization purposes.
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3.2 The Selection Problem

Fitness proportionate selection is the undisputed selection method in population ge-

netics. It is considered to be a model for natural selection. But the selection strongly

depends on the fitness values. When the population approaches an optimum, selec-

tion gets weaker and weaker, because the fitness values become similar. Therefore

breeders of livestock use other selection methods. For large populations they mainly

apply truncation selection. It works as follows. A truncation threshold τ is fixed.

Then the τN best individuals are selected as parents for the next generation. These

parents are then randomly mated.

We use mainly truncation selection in our algorithms. Another popular scheme is

tournament selection of size k. Here k individuals are randomly chosen. The best in-

dividual is taken as parent. Unfortunately the mathematics for both selection meth-

ods is more difficult. Analytical results for tournament selection have been obtained

by Mühlenbein [18].

3.3 Tournament Selection

We model binary tournament selection as a game. Two individuals with genotype x
and y “play” against each other. The one with the larger fitness gets a payoff of 2. If

the fitness values are equal, both will win half of the games. This gives a payoff of

1. The game is defined by a payoff matrix with coefficients

axy =







2 when f (x) > f (y),
1 when f (x) = f (y),
0 when f (x) < f (y).

With some effort one can show that

∑

x

∑

y
p(x, t)axyp(y, t) = 1. (23)

After a round of tournaments the genotype frequencies are given by

ps(x, t + 1) = p(x, t)
∑

y
axyp(y, t). (24)

If we set

b(x, t) =
∑

y
axyp(y, t),

then the above equation is similar to proportionate selection using the function

b(x, t). But b depends on the genotype frequencies. Furthermore, the average b̄(t) =
∑

p(x, t)b(x, t) remains constant, b̄(t) ≡ 1.
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The difference equations for the univariate marginal frequencies can be derived in

the same manner as for proportionate selection. They are given by

p(xi , t + 1) = p(xi, t) · B̄i(t), (25)

B̄i(t) =
∑

x,Xi=xi

b(x, t)

n
∏

j=1
j 6=i

p(xj , t). (26)

The difference equation for binary tournament selection is more difficult than for

proportionate selection: B̄i is quadratic in p(xj ). Tournament selection uses only

the order relation of the fitness values. The fitness values themselves do not change

the outcome of a tournament. Therefore the evolution of the univariate marginal

frequencies depends on the order relation only.

The analysis is still more difficult for truncation selection. Therefore breeders have

developed a macroscopic theory using average fitness and variance of the popula-

tion.

3.4 The Science of Breeding

For a single trait the theory can be easily summarized. Starting with the fitness

distribution, the selection differential S(t) is introduced. It is the difference between

the average of the selected parents and the average of the population,

S(t) = W( ps(t + 1)) − W( p(t)). (27)

Similarly the response R(t) is defined:

R(t) = W( p(t + 1)) − W( p(t)). (28)

Next a linear regression is done,

R(t) = b(t)S(t), (29)

where b(t) is called realized heritability. The selection differential can often be

approximated by

S(t) ≈ Iτ V
1
2 (t), (30)

where Iτ is called the selection intensity. V is the variance of the fitness distribution.

Combining the two equations we obtain the famous equation for the response to

selection:

R(t) = b(t)IτV
1
2 (t). (31)

The most difficult problem is to estimate b(t). Breeders use the estimate

b(t) ≈ VA(t)

V (t)
, (32)
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where VA(t) denotes the additive genetic variance. For UMDA it is defined as

VA(t) =
n
∑

i=1

∑

xi

p(xi , t)

(

∂W

∂p(xi)
− W(t)

)2

. (33)

These equations are discussed in depth in [18]. For the special case that all univariate

marginal distribution are equal, i.e., pi := p, the response to selection equation

gives a difference equation for p. Thus it might be possible to obtain an analytical

solution for p(t).

We cite from [18] the analytical solutions for the linear function OneMax(n) =
∑

i xi . For completeness we give the difference equation and its solution.

Theorem 6. If in the initial population all univariate marginal frequencies are

identical to p0 > 0, then we obtain for UMDA and OneMax

R(t) = 1 − p(t), (34)

p(t) = 1 − (1 − p0)(1 − 1

n
)t , (35)

for proportionate selection, and

R(t) ≈ Iτ

√

np(t)(1 − p(t)), (36)

p(t) ≈ 0.5

(

1 + sin
( Iτ√

n
t + arcsin(2p0 − 1)

)

)

, (37)

for truncation selection.

These solutions perfectly match the figures obtained from actual UMDA runs. In

figure 1, the analytical results for proportionate selection and truncation selection

with τ = 0.3 are almost identical to the simulation results.

Using proportionate selection, it takes the population a long time to approach the

optimum. In contrast, truncation selection and tournament selection lead to much

faster convergence: p increases almost linearly until near the optimum. Trunca-

tion selection with τ = 0.6 behaves very similarly to tournament selection. This

is known from [18].

The theory of breeding uses macroscopic variables, the average and the variance of

the population. But there exists only one equation, the response to selection equa-

tion. We need a second equation connecting the average fitness and the variance in

order to be able to compute the time evolution of the average fitness and the vari-

ance. There have been many attempts in population genetics to find a second equa-

tion. But all equations assume that the variance of the population continuously de-

creases. This is not the case for arbitrary fitness functions. Recently, Prügel-Bennett

and Shapiro [26] have independently proposed to use moments for describing ge-

netic algorithms. They apply methods of statistical physics to derive equations for

higher moments for special fitness functions.
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Fig. 1. Comparison of selection methods for OneMax(128).

Before we numerically show the optimization power of UMDA, we shortly discuss

other methods also using univariate marginal distributions.

4 Optimization Methods Using Univariate Distributions

The importance of using univariate marginal distributions has been independently

discovered by several researchers. We just discuss PBIL of Baluja and Caruana [2]

and ant colony optimization by Dorigo & Di Caro [5]. PBIL does not use strict

Darwinian selection in populations, but the the probabilities are updated according

to

p(xi , t + 1) = p(xi, t) + λ
(

ps(xi, t) − p(xi, t)
)

. (38)

The string x is generated as before:

p(x, t + 1) =
n
∏

i=1

p(xi, t + 1). (39)

The convergence speed of this algorithm critically depends on λ. For λ = 0 we

have a random search, for λ = 1 we obtain UMDA. The smaller λ, the slower the

convergence speed. This problem is discussed in [18]. Our numerical experiments

indicate that the UMDA method is to be preferred, because it is very difficult to

choose λ for a given problem.

In principle, univariate marginal distributions are also used in ant colony optimiza-

tion (ACO, [5]). For each ant k, a probability pij is computed to move from state i
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to state j . The equation is given by

pk
ij :=

{

τij (t)
∑

j∈N(i) τij (t)
for j ∈ N(i),

0 for j 6∈ N(i).
(40)

The variable τij is updated according to

τij (t + 1) = τij (t) + 1τij . (41)

Here pij = pi(xj ) plays the role of our univariate marginal distributions. If all states

j are contained in the neighbourhood N(i) then we have an UMDA algorithm with

integer variables. A solution x is generated with probability

p(x) =
∏

i

pi(xj ).

Ant colony optimization is mainly applied to constrained combinatorial optimiza-

tion problems like the travelling salesman problem (TSP) or the quadratic assign-

ment problem. Here the neighbourhoods have to be dynamically changed. We take

TSP as example. If city l is chosen to be at a certain place of the tour, it is not al-

lowed to be chosen again. ACO solves this problem by setting all pk
il with i > l to

0. The other pk
ij values are renormalized, so that the sum of the probabilities of all

feasible moves is 1. Thus ACO constructs feasible solutions. But the UMDA theory

does not apply because of the renormalization of the probabilities.

5 The Replicator Equation and Combinatorial Optimization

For mathematical analysis the equations for discrete generations are often approxi-

mated by equations with continuous time. That is, the difference equations are ap-

proximated by differential equations. The reason is that the mathematical analysis

of differential equations is easier. In general, this approximation is a complicated

issue. We consider only the proportionate selection equation (2).

Let nx(t) denote the number of occurences of string x at generation t . Let N(t)

denote the size of the population. Then we have p(x, t) = nx(t)/N(t).

Lemma 4. If the occurrences grow according to their fitness,

nx(t + 1) = f (x)nx(t),

then

p(x, t + 1) = p(x, t)
f (x)

f̄ (t)
.
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This is just the equation describing proportionate selection. It is obtained from

N(t + 1) =
∑

x

f (x)
nx(t)

N(t)
N(t) = f̄ (t)N(t).

The corresponding lemma for continuous t is as follows:

Lemma 5. If the occurrences grow according to their fitness,

dnx(t)

dt
= f (x)nx(t),

then

dp(x, t)

dt
= p(x, t)

(

f (x) − f̄ (t)
)

. (42)

Proof. We have

dp(x, t)

dt
=

dnx

dt
N − dN

dt
nx

N2

= nx(t)

N(t)

(

f (x) − f̄ (t)
)

.

Equation (42) is a special case of a differential equation defined by

dpα

dt
= pα

(

fα( p) −
∑

x

pαfα( p)

)

, (43)

where pα now denotes p(x). This equation is called the replicator equation. It is

of great importance in many fields connected to biology. For a general investigation

of these equations the reader is referred to [11]. Interesting discussions can also be

found in [6] and [25].

We introduce an extension of the replicator equation, called the diversified replicator

equation [30].

Definition 6. Let pαk ≥ 0 be defined for 1 ≤ k ≤ m with
∑m

k pαk = 1. Then a

diversified replicator equation is defined for discrete time by

pαk(t + 1) − pαk(t) = pαk(t)
fαk( p(t)) −

∑m
k=1 pαk(t)fαk( p(t))

∑m
k=1 pαkfαk( p(t))

. (44)

The corresponding differential equation is given by

dpαk

dt
= pαk

(

fαk( p) −
m
∑

k=1

pαkfαk( p)

)

. (45)
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The replicator and the diversified replicator equation differ in the constraints. We

have
∑

α pα = 1 for the replicator equation and
∑

k pαk = 1 for the diversified

replicator equation. Our central UMDA equation (16) is a special case of a diver-

sified replicator equation. This can be seen by setting k ∈ {0, 1}, α ∈ {1, . . . , n},
pαk := p(xα = k) and

fαk( p) =
∂W

∂pαk

. (46)

Thus (16) defines a gradient system with the potential W( p). Gradient systems have

nice properties. We just give one example.

Theorem 7. If the diversified replicator equation is a gradient system, the potential

W never decreases, i.e.,

dW

dt
≥ 0. (47)

Proof. We compute

dW

dt
=
∑

α

∑

k

∂W

∂pαk

dpαk

dt

=
∑

α

∑

k

∂W

∂pαk

pαk

(

fαk( p) −
m
∑

k=1

pαkfαk( p)

)

=
∑

α

(

∑

k

pαkf
2
αk( p) − (

∑

k

pαkfαk( p))2

)

≥ 0.

The diversified replicator equation has been used by Voigt [30] and Mühlenbein [19]

to solve combinatorial problems. In their method the difference equations are iter-

ated until all probabilities pik have converged. This method poses a major difficulty.

It stops at local maxima in the interior of the unit cube. But these points are not

feasible. Therefore Voigt [30] has developed adaptive techniques which drive the

probabilities to the corner of the simplices.

Using the UMDA algorithm is a much simpler solution to the problem. We interpret

pik as the probability that xi is set to k. We generate a population of solutions, select

the better ones and compute the probabilities ps(xi) of the selected strings. The new

population is generated by the usual UMDA method

p(x, t + 1) =
∏

i

ps(xi). (48)

The diversified replicator equation has been used in [30,19] to solve combinatorial

problems like the graph partitioning problem (GPP) and the TSP. It is worthwhile

to test UMDA on this problem.
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We will numerically investigate UMDA in the next section. The application domain

is the optimization of discrete functions.

6 Numerical Results for UMDA

This section solves the problem put forward by Mitchell et al. [14]: to understand

the class of problems for which genetic algorithms are most suited, and in particular,

for which they will outperform other search algorithm. We start with the Royal Road

function, which was erroneously believed to lay out a royal road for the GA to follow

to the optimal string.

6.1 Royal Road Function

We discuss the Royal Road function R1, which was used by Mitchell et al. [14]. It

is defined as follows:

R1(l, x) =
l−1
∑

i=0

8
∏

j=1

x8i+j . (49)

The function is of order 8. The Building Block Hypothesis (BBH, [12]) states that

“the GA works well when instances of low-order, short schemas that confer high fit-

ness can be recombined to form instances of larger schemas that confer even higher

fitness.” In our terminology a schema defines a marginal distribution. Thus a first-

order schema defines a univariate marginal distribution. Our analysis has shown

that only the first half of the BBH is correct: first order schemata of high fitness are

recombined. Larger schemata play no role.

1+1 SGA UMDA p UMDA τ = 0.3 UMDA τ = 0.05 FDA τ = 0.3

6,334 61,334 55,586 28,000 14,264 7,634

Table 3. Mean function evaluations for Royal Road(8).

Table 3 confirms and extends the results of Mitchell et al. [14]. The really bad per-

formance of SGA is mainly a result of proportionate selection. UMDA with propor-

tionate selction (UMDA p) needs slightly less evaluations. With very strong selec-

tion, UMDA needs only about twice as much function evaluations as the (1 + 1)-

algorithm. This algorithm performs a random bit flip and accepts a new config-

uration if its fitness is equal or better. The good performance of this algorithm

has already been shown in [17]. But it performs only good if the fitness function

never decreases with increasing number of bits. Almost identical performance to
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Fig. 2. Convergence of Royal Road.

the (1 + 1)-algorithm can be obtained by FDA. It uses marginal distributions of size

8 instead of univariate marginal distributions. It will be explained in section 7.

Figure 2 shows once more the importance of selection. Proportionate selection per-

forms very good in the beginning, because the fitness values of all strings containing

no building block are zero. These strings are not reproduced. But after 5 generations

proportionate selection gets weaker. Truncation selection with τ = 0.3 overtakes

it after 23 generations. We just mention, that the numerical results would be much

worse for proportionate selection, if we added 1 to the Royal Road function. In this

case proportionate selection selects also many strings without a building block.

We will now explain the results by using our theory to analytically solve the equa-

tions. We have

W̃ ( p) =
l−1
∑

i=0

8
∏

j=1

p8i+j ,

∂W̃

∂pk

=
7
∏

j=1
8i+j 6=k

p8i+j , for 8i ≤ k < 8i + 8.

For truncation selection we will apply the response to selection equation. Therefore

we have to compute the variance Vl(t). We simplify the computation by observing

that the blocks of 8 variables are independent and therefore

Vl(t) = l · V1(t).

We recall that all function values are 0 except f (1, . . . , 1). Therefore

V1(t) =
∑

x

p(x, t)f 2(x) − W 2

=
∏

pi − (
∏

pi)
2.
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If we assume that pi = p for all i, we obtain

V8(t) = 8p(t)8(1 − p(t)8). (50)

We can now formulate the theorem.

Theorem 8. If all univariate marginal distributions are identical to p(t) and p(0) =
p0 then we obtain for proportionate selection

p(t + 1) − p(t) = 1 − p(t)

8
, (51)

p(t) = 1 − (1 − p0)(
7
8
)t . (52)

For truncation selection with threshold τ we approximately get

R(t) ≈ b(t)Iτ

√

8p(t)8(1 − p(t)8), (53)

p(t)8 ≈ 0.5

(

1 + sin
(b(t)Iτ√

8
t + arcsin(2p8

0 − 1)
)

)

. (54)

Proof. The conjectures for proportionate selection directly follow from (17). From

the response to selection equation we obtain

8p(t + 1)8 − 8p(t)8 ≈ b(t)Iτ

√

8p(t)8(1 − p(t)8).

If we set q(t) = p(t)8 the above equation is identical to the equation for OneMax(8).

The approximate solution is given by (37).

In figure 3, a comparison between the theoretical solution and a simulation run is

made. The simulation run gives slightly larger values of W . The reason is that in

finite populations there are random fluctuations. UMDA is not able to keep pi =
pj := p. We use the estimate p(t) = 1/n

∑

i pi(t) to compute W for the figure.

But the similarity between the theory and the simulations is still impressive.

In order to apply (54) we need an estimate for the realized heritability b(t). Ex-

periments show that b(t) increases approximately linearly from about 0 to 1. Thus

we set b(t) ∝ t . Figure 4 shows a comparison between (54) and a simulation with

truncation threshold 0.05. The coincidence between theory and simulation is very

good.

This example shows that the response to selection equation can in special cases be

used to compute an analytical solution for p(t). The difficulty is to determine the

heritability b(t).

6.2 Multimodal Functions Suited for UMDA Optimization

Equation (16) shows that UMDA performs a gradient ascent in the landscape given

by W . This helps our search for functions best suited for UMDA. We take as first
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Fig. 3. Proportionate selection for Royal Road: theory and simulation.

example the function BigJump. It is defined as follows, with |x|1 =
∑

xi equal to

the number of 1-bits:

BigJump(n, m, k, x) :=











|x|1 for 0 ≤ |x|1 ≤ n − m,

0 for n − m < |x|1 < n,

k · n for |x|1 = n.

(55)

The bigger m, the wider the valley. The parameter k can be increased to give bigger

weight to the maximum. For m = 1 we obtain the popular OneMax function defined

by OneMax(n) = |x|1.

BigJump depends only on the number of bits on. We assume that all p(xi = 1) are

identical to a single value denoted as p(t). Then W depends only on one parameter,

p. W(p) is shown for m = 30 and k = 20 in figure 5. In contrast to the discrete

function the average fitness W(p) looks fairly smooth. The open circles are the

values of p(t) determined by an UMDA run, setting p(t) := 1/n
∑

i pi(t). Note

how closely the simulation follows the theoretical curve. Because we use discrete

generations in UMDA the population is able to pass the local minimum at about

p = 0.83.

This simple example confirms in a nutshell the results of our theory. Evolutionary

algorithms transform the original fitness landscape given by f (x) into a fitness

landscape defined by W̃ ( p). This transformation smoothes the rugged fitness land-
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Fig. 4. Truncation selection for Royal Road: theory and simulation.

scape f (x). In these landscapes simple evolutionary algorithms will find the global

optimum.

A still more spectacular example is the Saw landscape. The definition of the function

can be extrapolated from figure 6. In Saw(n, m, k), n denotes the number of bits and

2m the distance from one peak to the next. The highest peak is multiplied by k (with

k ≤ 1), the second highest by k2, then k3 and so on. The landscape is very rugged. In

order to get from one local optimum to another one, one has to cross a deep valley.

But again the transformed landscape W(p) is fairly smooth. An example is shown

in figure 7. Whereas f (x) has 5 isolated peaks, W(p) has three plateaus, a local

peak and the global peak. Therefore we expect that UMDA should be able to cross

the plateaus and terminate at the local peak. This behavior can indeed be observed

in figure 7. Furthermore, as predicted by (16), the progress of UMDA slows down

on the plateaus.

Next we will investigate UMDA with truncation selection. We have not been able to

derive precise analytical expressions. In figure 8 the results are displayed.

In the simulation two truncation thresholds, τ = 0.05 and τ = 0.01, have been

used. For τ = 0.05 the probability p stops at the local maximum for W̃ (p). It is

approximately p = 0.78. For τ = 0.01 UMDA is able to converge to the optimum

p = 1. It does so by even going downhill!
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Fig. 5. BigJump(30,3,20), UMDA, p versus average fitness, population size 2000.

These two examples show that UMDA can solve difficult multimodal optimization

problems. It is obvious that any search method using a single search point like the

(1 + 1)-algorithm needs an almost exponential number of function evaluations.
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Fig. 6. Definition of Saw(36,4,0.85).
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Fig. 7. Saw(36,4,0.85), UMDA, p versus average fitness, population size 2000.

P
S

frag
rep

lacem
en

ts

8
0

1
0
0

7
0

6
0

5
0

4
5

3
5

35

30

25

20

15

1
2

10

9876

5

432

1
.2

10
0

0
.1

0.2

0
.3

0.4

0
.5

0.6

0
.7

0.8

0
.9

p

W

g
en

eratio
n
s

R
o
y
al

R
o
ad

8
×

8

τ
=

0
.3

τ
=

0
.6

th
eo

ry

to
u
rn

am
en

t
p
ro

p
o
rtio

n
ate

B
ig

Ju
m

p
(3

0
,

3
,
2
0
)

U
M

D
A

F
D

A
R

(t)/
S
(t)f̄

τ = 0.01
τ = 0.05

Saw(36, 4, 0.85)

D
ecep

tive-4

V
AV

n
u
m

b
er

o
f

1
-b

its

v
alu

e
Fig. 8. Results with normal and strong selection.

6.3 Deceptive Functions

But there are many optimization problems where UMDA is mislead. UMDA will

converge to local optima, because it does not use correlations between the variables.

We demonstrate this problem by a deceptive function. We use the definition

Deceptive(x, k) :=
{

k − 1 − |x|1 for 0 ≤ |x|1 < k,

k for |x|1 = k.
(56)

The global maximum is isolated at x = (1, . . . , 1). A deceptive function of order

n is a needle-in-a-haystack problem. This is far too difficult to optimize for any
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Fig. 9. Average fitness W(p) for UMDA and FDA for Deceptive(36,4).

optimization method. We simplify the optimization problem by adding l distinct

Deceptive(k)-functions to give a fitness function of size n = l × k,

Deceptive(n, k) =
n
∑

i=1,k+1,...

Deceptive
(

(xi, xi+1, . . . , xi+k−1), k
)

. (57)

This function is also deceptive. The local optimum x = (0, . . . , 0) is surrounded by

good fitness values, whereas the global optimum is isolated.

In figure 9, we show the average fitness W(p) and an actual UMDA run. Starting

at p(0) = 0.5, UMDA converges to the local optimum x = (0, . . . , 0). UMDA

will converge to the global optimum if it starts near to the optimum e.g. p(0) ≥
0.6. Also shown is a curve derived from FDA. FDA uses fourth order marginal

distributions. It converges to the global optimum, even if the initial population is

generated randomly. But one can see in the figure that p(t) also decreases first.

FDA is discussed in section 7.

6.4 Numerical Investigations of the Science of Breeding

In this section we show that the science of breeding can be very usefully applied

to evolutionary optimization. Linear functions are the ideal case for the theory. The

heritability b(t) is 1 and the additive genetic variance is identical to the variance.

We skip this trivial case and start with a multiplicative fitness function f (x) =
∏

i(1 − s)1−xi .

Figure 10 confirms the theoretical results from section 2 (VA and V are multiplied

by 10 in this figure). Additive genetic variance is identical to the variance and the

heritability is 1. The function is highly nonlinear of order n, but nevertheless it is
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Fig. 10. Heritability and variance for a multiplicative function.

easy to optimize. The function has also been investigated by Rattray and Shapiro

[27]. They have not observed that the population remains in linkage equilibrium,

making their calculations very difficult.

The function Saw is difficult to optimize. We see in figure 11 that for a long time

there is no progress. An increase of the average fitness occurs at generations 6 till

9. During this time the additive genetic variance VA is higher. But the heritability is

almost zero almost anywhere.
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Fig. 11. Heritability and variance for function Saw.
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An interesting case is the function Deceptive-4. In figure 12, the function is opti-

mized for 32 bits. As predicted by the theory, UMDA converges to the local opti-

mum x = (0, . . . , 0). Heritability is almost zero at the beginning, indicating that the

optimization problem is difficult. In the beginning the competition between setting

the genes to 0 or to 1 is undecided. UMDA decides to go in the direction of 0. If

there is a high percentage of zeros in the population, then heritability increases to

almost 1. In this area the fitness function is almost linear.
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Fig. 12. Heritability and variance for Deceptive-4: τ = 0.3.

The examples demonstrate that it is worthwhile to compute the quantities used for a

scientific breeding programme. They clearly indicate how difficult the optimization

problem is. In breeding of livestock heritability is normally greater than than 0.2. If

we optimize arbitrary fitness functions the heritability can be almost 0. But because

we can easily compute 1000 generations on a computer in a few minutes, UMDA

can be used for problems with very low heritability.

We have shown that UMDA can optimize difficult multimodal functions, thus ex-

plaining the success of genetic algorithms in optimization. We have also shown that

UMDA can easily be deceived by simple functions called deceptive functions. These

functions need marginal distributions of higher order.

7 FDA – The Factorized Distribution Algorithm

For the mathematical analysis we will use Boltzmann selection. Boltzmann se-

lection can be seen as proportionate selection applied to the transformed function

F(x) = exp(βf (x)).
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Definition 7. For Boltzmann selection the distribution after selection is given by

ps(x, t) = p(x, t)
eβf (x)

Wβ

, (58)

where β > 0 is a parameter, also called the inverse temperature, and

Wβ =
∑

p(x, t)eβf (x)

is the weighted average of the population.

For Boltzmann distributions we have proven a factorization theorem for the distri-

bution p(x, t) and convergence for an algorithm using this factorization [20]. The

proof is simple, because if p(x, t) is a Boltzmann distribution with factor β1 and

Boltzmann selection is done with factor β2, then p(x, t + 1) = p(x, t) is a Boltz-

mann distribution with factor β = β1 + β2.

Theorem 9. Let p(x, 0) be randomly distributed. Let β1, . . . , βt−1 be the schedule

of the inverse temperature for Boltzmann selection. Then the distribution is given by

p(x, t) = eβf (x)

Zβ

, (59)

where β =
∑t−1

i=1 βi . Zβ is the partition function Zβ =
∑

x eβf (x).

Equation (59) is a complete analytical solution of the dynamics. But it cannot be

used for an algorithm. p(x, t) consists of 2n − 1 variables. Therefore the amount

of computation is exponential. But there are many cases where the distribution can

be factored into conditional marginal distributions each depending only on a small

number of parameters. We recall the definition of conditional probability.

Definition 8. The conditional probability p(x|y) is defined as

p(x|y) = p(x, y)
p(y)

. (60)

From this definition the following theorem easily follows.

Theorem 10 (Bayesian Factorization). Each probability can be factored into

p(x) = p(x1)

n
∏

i=2

p(xi | pai). (61)
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Proof. By definition of conditional probabilities we have

p(x) = p(x1)

n
∏

i=2

p(xi |x1, · · · , xi−1). (62)

Let pai ⊂ {x1, · · · , xi−1}. If xi and {x1, · · · , xi−1} \ pai are conditionally indepen-

dent given pai , we can simplify p(xi |x1, · · · , xi−1) = p(xi | pai).

pai are called the parents of variable Xi . This factorization defines a directed graph.

In the context of graphical models the graph and the conditional probabilities are

called a Bayesian network [13,7]. The factorization is used by the Factorized Dis-

tribution Algorithm (FDA).

FDA

STEP 0: Set t ⇐ 0. Generate N � 0 points randomly.

STEP 1: Selection.

STEP 2: Compute the conditional probabilities ps(xi | pai, t) using the selected

points.

STEP 3: Generate a new population according to

p(x, t + 1) =
n
∏

i=1

ps(xi| pai, t).

STEP 4: If termination criteria is met, FINISH.

STEP 5: Set t ⇐ t + 1. Go to STEP 2.

FDA can be used with an exact or an approximate factorization. It is not restricted to

Bayesian factorization. FDA uses finite samples of points to estimate the conditional

distributions. Convergence of FDA to the optimum will depend on the size of the

samples.

If the factorization does not contain conditional marginal distributions, but only

marginal distributions, FDA can be theoretically analyzed. The difference equations

of the marginal distributions are of the form given in (16) [15].

The amount of computation of FDA depends on the size of the population (N) and

the number of variables used for the factors. There exist many problems where the

size of the factors is bounded by k independent from n. In this case FDA is very

efficient [16]. But for the function BigJump an exact factorization needs a factor

of size n. Then the amount of computation of FDA is exponential in n. We have

seen before that for BigJump, UMDA will already find the global optimum. Thus an

exact factorization is not a necessary condition for convergence. But it is necessary

if we want to be sure that the optimum is found.
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8 Finite Populations

In finite populations, convergence of UMDA or FDA can only be probabilistic. Since

UMDA is a specialized FDA algorithm, it is sufficient to discuss FDA. This section

is extracted from [16].

Definition 9. Let ε be given. Let Pconv(N) denote the probability that FDA with a

population size of N converges to the optima. Then the critical population size is

defined as

N∗(ε) = min
N

Pconv(N) ≥ 1 − ε. (63)

If FDA with a finite population does not convergence to an optimum, then at least

one gene is fixed to a wrong value. The probability of fixation is reduced if the

population size is increased. We obviously have for FDA

Pconv(N1) ≤ Pconv(N2), for N1 ≤ N2.

The critical question is: how many sample points are necessary to reasonably ap-

proximate the distribution used by FDA? A general estimate from Vapnik [29] can

be a guideline. One should use a sample size which is about 20 times larger than the

number of free parameters.

We discuss the problem with a special function called Int. Int(x) gives the integer

value of the binary representation:

Int(n) =
n
∑

i=1

2i−1xi . (64)

The fitness distribution of this function is not normally distributed. The function

has 2n different fitness values. We show the cumulative fixation probability in table

4 for Int(16). The fixation probability is larger for stronger selection. For a given

truncation selection the maximum fixation probability is at generation 1 for very

small N . For larger values of N , the fixation probability increases until a maximum

is reached and then decreases again. This behaviour has been observed for many

fitness distributions.

Boltzmann selection with β = 0.01 is still very strong for the fitness distribution

given by Int(16). For N = 700, the largest fixation probability is still at the first

generation. Therefore the critical population size for Boltzmann selection with β =
0.01 is very high (N∗ > 700). For truncation selection with τ = 0.25 we have

N∗(0.1) ≤ 80.

Because Boltzmann selection in finite populations critically depends on a good an-

nealing schedule, we normally run FDA with truncation selection. This selection
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τ = 0.25 τ = 0.5 τ = 0.25 τ = 0.5 Boltz. Boltz.

t N = 30 N = 30 N = 80 N = 60 N = 500 N = 700

1 0.0955 0.0035 0.0 0.0 0.2520 0.0885

2 0.4065 0.0255 0.0025 0.0095 0.2980 0.1110

3 0.5955 0.1040 0.0165 0.0205 0.3180 0.1275

4 0.6880 0.2220 0.0355 0.0325 0.3295 0.1375

5 0.7210 0.3270 0.0575 0.0490 0.3385 0.1455

6 0.7310 0.4030 0.0695 0.0630 0.3435 0.1510

7 0.7310 0.4470 0.0740 0.0715 0.3505 0.1555

8 0.7310 0.4705 0.0740 0.0780 0.3530 0.1565

9 0.7310 0.4840 0.0740 0.0806 0.3555 0.1575

Table 4. Cumulative fixation probability for Int(16). Truncation selection vs. Boltzmann

selection with β = 0.01.

method is a good compromise. It has an important property, which we formulate as

an empirical law. It has been confirmed by many numerical experiments.

Empirical law. Let ε be reasonable small e.g. ε = 0.1. Then the number of gener-

ations to converge to the optimum remains constant for N ≥ N ∗(ε),

GENe(N
∗(ε)) = GENe(N) = GENe(N = ∞), for N ≥ N∗(ε). (65)

Truncation selection has a free parameter, the truncation threshold τ . It seems ob-

vious that the smaller the threshold τ , the larger N∗ has to be. But numerical ex-

periments have shown that there exists a threshold τmin which leads to a minimal

N∗
min. This means that N∗ also increases for very low selection. The reason for this

phenomenon is genetic drift. Slow selection leads to a large number of generations

which increases the probability of gene fixation. This problem has been first in-

vestigated by Mühlenbein and Schlierkamp-Voosen [21] for OneMax and genetic

algorithms.

We denote the critical population size for given τ by N ∗(ε, τ ). Because ε is fixed, we

omit ε and write just N∗(τ ). For Int we have approximately computed N ∗(τ ) by a a

Markov chain analysis. The Markov model was simplified, therefore we formulate

the result as a conjecture.

Conjecture 1. Let τk = 2−k . For FDA with fitness function Int, the critical popula-

tion size N∗(τ ) is approximately given by

N∗(τk) ≈ N∗(τ1) ∗ 2
k−1

2 , for k ≥ 1.

If N∗(τ ) has been determined, then an optimal truncation threshold τopt can be

computed. This threshold gives the minimum number of function evaluations FE.
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Definition 10. The optimum truncation threshold τopt is defined by

τopt = min
τ

FE(τ ) = min
τ

GENe(τ ) ∗ N∗(τ ). (66)

In general τopt is different from τmin which needs the minimal population size. The

following result follows from k > 1 from the above conjecture.

Empirical Law. For Int the optimal truncation threshold τ is contained in the

interval [0.125, 0.4].
Proof. Part of the result follows from the approximate formulas. For τ = 2−k we

obtain using the critical population size

FE ≈ n

k
× N∗(τ1) × 2

k−1
2 ∝ 1

√
τ log(1/τ)

, for k ≥ 1. (67)

The minimum is at k = 0.5(1 +
√

17).

This short discussion indicates the difficulty of the critical population size problem.

In principle UMDA depends only on one parameter, the critical population size. But

this size depends on the function to be optimized. Numerical estimates are very dif-

ficult. The finite size problem is discussed in a different context in the next section.

There we introduce an algorithm which computes a good factorization from search

points.

9 LFDA – Learning a Bayesian Factorization

Computing the structure of a Bayesian network from data is called learning. Learn-

ing gives an answer to the question: given a population of selected points M(t),

what is a good Bayesian factorization fitting the data? The most difficult part of the

problem is to define a quality measure also called scoring measure.

A Bayesian network with more arcs fits the data better than one with less arcs.

Therefore a scoring metric should give the best score to the minimal Bayesian net-

work which fits the data. It is outside the scope of this chapter to discuss this problem

in more detail. The interested reader is referred to the two papers by Heckerman and

Friedman et al., both in [13].

For Bayesian networks two quality measures are most frequently used: the Bayes

Dirichlet (BDe) score and the Minimal Description Length (MDL) score. We con-

centrate on the MDL principle. This principle is motivated by universal coding.

Suppose we are given a set D of instances, which we would like to store. Naturally,

we would like to conserve space and save a compressed version of D. One way of

compressing the data is to find a suitable model for D that the encoder can use to

produce a compact version of D. In order to recover D we must also store the model

used by the encoder to compress D. Thus the total description length is defined as
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the sum of the length of the compressed version of D and the length of the descrip-

tion of the model. The MDL principle postulates that the optimal model is the one

that minimizes the total description length.

In the context of learning Bayesian networks, the model is a network B describing

a probability distribution p over the instances appearing in the data. Several authors

have approximately computed the MDL score. Let M = |D| denote the size of the

data set. Then MDL is approximately given by

MDL(B, D) = − ld(P (B)) + M · H(B, D) + 1
2

PA · ld(M), (68)

with ld(x) := log2(x). P(B) denotes the prior probability of network B, PA =
∑

i 2| pai | gives the total number of probabilities to compute. H(B, D) is defined by

H(B, D) = −
n
∑

i=1

∑

pai

∑

xi

m(xi, pai)

M
ld

m(xi, pai)

m(pai)
, (69)

where m(xi, pai) denotes the number of occurrences of xi given configuration pai .

m(pai) =
∑

xi
m(xi, pai). If pai = ∅, then m(xi, ∅) is set to the number of occur-

rences of xi in D.

The formula has an interpretation which can be easily understood. If no prior infor-

mation is available, P(B) is identical for all possible networks. For minimizing, this

term can be left out. 0.5PA · ld(M) is the length required to code the parameter of

the model with precision 1/M . Normally one would need PA · ld(M) bits to encode

the parameters. However, the central limit theorem says that these frequencies are

roughly normally distributed with a variance of M−1/2. Hence, the higher 0.5 ld(M)

bits are not very useful and can be left out. −M · H(B, D) has two interpretations.

First, it is identical to the logarithm of the maximum likelihood (ld(L(B|D))). Thus

we arrive at the following principle:

Choose the model which maximizes ld(L(B|D)) − 1
2

PA · ld(M).

The second interpretation arises from the observation that H(B, D) is the condi-

tional entropy of the network structure B, defined by PAi , and the data D. The above

principle is appealing, because it has no parameter to be tuned. But the formula has

been derived under many simplifications. In practice, one needs more control about

the quality vs. complexity tradeoff. Therefore we use a weight factor α. Our measure

to be maximized is called BIC:

BIC(B, D, α) = −M · H(B, D) − αPA · ld(M). (70)

This measure with α = 0.5 has been first derived by Schwarz [28] as the Bayesian

Information Criterion.

To compute a network B∗ which maximizes BIC requires a search through the space

of all Bayesian networks. Such a search is more expensive than to search for the op-

tima of the function. Therefore the following greedy algorithm has been used. kmax

is the maximum number of incoming edges allowed.
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BN(α, kmax)

STEP 0: Start with an arc-less network.

STEP 1: Add the arc (xi, xj ) which gives the maximum increase of BIC(α) if

|PAj | ≤ kmax and adding the arc does not introduce a cycle.

STEP 2: Stop if no arc is found.

Checking whether an arc would introduce a cycle can be easily done by maintaining

for each node a list of parents and ancestors, i.e., parents of parents etc. Then (xi →
xj ) introduces a cycle if xj is ancestor of xi .

The BOA algorithm of Pelikan [24] uses the BDe score. This measure has the fol-

lowing drawback. It is more sensitive to coincidental correlations implied by the data

than the MDL measure. As a consequence, the BDe measure will prefer network

structures with more arcs over simpler networks [3]. The BIC measure with α = 1

has also been proposed by Harik [10]. But Harik allows only factorizations without

conditional distributions. This distribution is only correct for separable functions.

Given the BIC score we have several options to extend FDA to LFDA which learns

a factorization. Due to limitations of space we can only show results of an al-

gorithm which computes a Bayesian network at each generation using algorithm

BN(0.5, kmax). FDA and LFDA should behave fairly similar, if LFDA computes

factorizations which are in probability terms very similar to the FDA factorization.

FDA uses the same factorization for all generations, whereas LFDA computes a new

factorization at each step which depends on the given data M .

We have applied LFDA to many problems [16]. The results are encouraging. Here

we only discuss the functions introduced in section 6. We recall that UMDA finds

the optimum of BigJump and Saw. UMDA uses univariate marginal distributions

only. Therefore its Bayesian network has no arcs.

Table 5 summarizes the results. For LFDA we used three different values of α,

namely α = 0.25, 0.5, 0.75. The smaller α, the less penalty for the size of the struc-

ture. Let us discuss the results in more detail. α = 0.25 gives by far the best results

when a network with many arcs is needed. This is the case for Deceptive-4. Here a

Bayesian network with three parents is optimal. α = 0.25 performs bad on prob-

lems where a network with no arcs defines a good search distribution. For the linear

function OneMax, BIC(0.25) has only a success rate of 2%. The success rate can be

improved if a larger population size N is used. The reason is as follows. BIC(0.25)

allows denser networks. But if a small population is used, spurious correlations

may arise. These correlations have a negative impact for the search distribution.

The problem can be solved by using a larger population. Increasing the value from

N = 100 to N = 200 increases the success rate from 2% to 71% for OneMax.

For BigJump and Saw a Bayesian network with no arcs is able to generate the op-

timum. An exact factorization requires a factor with n parameters. We used the

heuristic BN with kmax = 8. Therefore the exact factorization cannot be found. In
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Function n α N τ Succ.% SDev

OneMax 30 UMDA 30 0.3 75 4.3

30 0.25 100 0.3 2 1.4

30 0.5 100 0.3 38 4.9

30 0.75 100 0.3 80 4.0

30 0.25 200 0.3 71 4.5

BigJump(30,3,1) 30 UMDA 200 0.3 100 0.0

30 0.25 200 0.3 58 4.9

30 0.5 200 0.3 96 2.0

30 0.75 200 0.3 100 0.0

30 0.25 400 0.3 100 0.0

Saw(32,2,0.5) 32 UMDA 50 0.5 71 4.5

32 UMDA 200 0.5 100 0.0

32 0.25 200 0.5 41 2.2

32 0.5 200 0.5 83 1.7

32 0.75 200 0.5 96 0.9

32 0.25 400 0.5 84 3.7

Deceptive-4 32 UMDA 800 0.3 0 0.0

32 FDA 100 0.3 81 3.9

32 0.25 800 0.3 92 2.7

32 0.5 800 0.3 72 4.5

32 0.75 800 0.3 12 3.2

Table 5. Numerical results for different algorithms, LFDA with BN(α, 8).

all these cases α = 0.75 gives the best results. BIC(0.75) enforces smaller net-

works. But BIC(0.75) performs very bad on Deceptive-4. Taking all results together

BIC(0.5) gives good results. This numerical results supports the theoretical estimate.

The numerical result indicates that control of the weight factor α can substantially

reduce the amount of computation. For Bayesian network we have not yet experi-

mented with control strategies. We have intensively studied the problem in the con-

text of neural networks [33].

10 Conclusion

We have shown that evolutionary algorithms can be approximated by an algorithm

which keeps the population in linkage equilibrium. This algorithm, called UMDA,

transforms the discrete optimization problem max f (x) into a continuous one de-

fined by max W̃ (p1, . . . , pn). 0 ≤ pi ≤ 1 is a univariate marginal distribution. With

proportionate selection UMDA performs gradient ascent on W̃ .
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UMDA solves difficult multimodal optimization problems. But there are functions

with highly correlated variables, where a search distribution using multivariate dis-

tributions and conditional marginal distributions has to be used. This is done by the

algorithm FDA. Ultimately our theory leads to a synthesis problem: finding a good

factorization for a search distribution defined by a finite sample. This problem lies

in the centre of probability theory. One approach to this problem uses Bayesian net-

works. For Bayesian networks numerical efficient algorithms have been developed.

Our LFDA algorithm computes a Bayesian network by minimizing the Bayesian

Information Criterion.

The computational effort of both FDA and LFDA is substantial higher than of

UMDA. Thus UMDA should be the first algorithm to be tried in a practical al-

gorithm. In a next step all three algorithms have to be extended to optimization

problems with constraints. We believe that with distributions constraints can be eas-

ier handles than with recombination. A first step has already been made in [20].
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