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Abstract: In this paper Wright’s equation, formulated in 1931 is proven and applied to evolutionary
computation. Wright’s equation shows that evolution is doing gradient ascent in the landscape defined

by the average fitness of the population. The average fitness W is defined in terms of marginal gene
frequencies p;. Wright’s equation is only approximately valid in population genetics, but it is exactly

describing the behavior of our Univariate Marginal Distribution Algorithm (UMDA).
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1 Introduction

The purpose of this paper is twofold. First we
analyze a powerful evolutionary algorithm us-
ing univariate marginal distributions (UMDA)
instead of recombination and mutation of
strings as it is done by genetic algorithms.
A specific instance of this algorithm can be
mathematically described by a set of difference
equations. We later found that these equations
have been proposed in population genetics by
Sewall Wright as early as 1931 [8]. Therefore
the second purpose is to relate our analysis to
the discussion of these equations in population
genetics.

Wright himself [11] gave a short histori-
cal overview about the difference equation
which later has been named Wright’s equa-
tion. “Only single-gene distributions were
dealt with mathematically in the 1931 paper
[8] but these were merely considered to be
indications of the sort of thing that is hap-
pening in the many dimensions to which the
verbal discussion was devoted. In a later pa-
per [9] a formula was given for Ap in cases
of multi-factorial heredity and an intermediate
optimum. This was taken up more generally
in 1937 [10] with the introduction of the sym-
bol W for selective value of the genotypes as a
whole,. . .It was assumed that the local popu-
lation in question was breeding at random and
that it was sufficiently accurate that all loci
were combined random.” The key formula was
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for binary alleles as follows:

IW

Aps = pilt +1) = pilt) = pi(t) (1 — pa()
1)

where 7 denotes a locus, and p; is the frequency
of gene 7 being 1. Wright’s extension to mul-
tiple alleles is wrong and therefore omitted.
Wright’s equation was criticized, especially
Fisher [2]. His main argument was that the
evaluation of the average fitness W needs on
the order of 2" terms. The interpretation
of Wright’s equation is debated till today[1].
For UMDA the difference equation is exact,
whereas it is an approximation in population
genetics.
The outline of the paper is as follows. In Sec-
tion 2 we prove Wright’s equation. It is valid
in evolutionary computation for proportionate
selection. Then the landscape metaphor is dis-
cussed. We give a simple formula for comput-
ing the average fitness W. In Section 4 we dis-
cuss tournament selection for a simple linear
fitness function.

2 Univariate Marginal Distri-
bution Algorithm

Let x (z1,...,2,) denote a vector,
z; € Ay ={0,1,2,...,m;}. A; just represents
a set of m; + 1 symbols, representing the
different alleles. We use the following con-
ventions. Capital letters X; denote variables,
small letters x; assignments. Let a function
f : X — IRy be given. We consider the



optimization problem x,,; = argmax f(x).

Definition: Let p(x,¢) denote the proba-
bility of x in the population at generation t.
Then pi(zi,t) = D« x,=q, P(X,t) defines the
univariate marginal distributions of variable
X;.

Note that ), 4. pi(zi,t) = 1. This means
that the parameters of the univariate marginal
distributions are not independent. For no-
tational simplicity we choose p;(0) to be the
dependent parameter. It can be eliminated,
if appropriate. We write p;(zg) if just one
generation is discussed. We recall two popular
recombination/crossover operator used in
genetic algorithms.

Definition: Let two strings x and y be
given. In one-point crossover the string z
is created by randomly choosing a crossover
point 0 < I < n and setting z; = z; for 1 <1
and z; = y; for ¢ > I. In uniform crossover
z; is randomly chosen with equal probability
from {z;,y;}.

In order to derive Wright’s equation, we have
to introduce a special distribution.

Definition: Robbins’ proportions are defined
by the distribution

n
7T;D(X’ t) = sz(zza t) (2)
1=1
A population in Robbins’ proportions is called
to be in linkage equilibrium in population
genetics.

In [3, 6] we have shown: All complete recom-
bination schemes lead to the same univariate
marginal distributions after one step of selec-
tion and recombination. If recombination is
used for a number of times without selection,
then the genotype frequencies converge to link-
age equilibrium. This means that all genetic
algorithms are identical if after one selection
step recombination is done without selection a
sufficient number of times. This fundamental
algorithm keeps the population in linkage equi-
librium. Linkage equilibrium was also assumed
by Wright.

Instead of performing recombination a number
of times in order to converge to linkage equilib-
rium, one can achieve this in one step by gene
pool recombination [7]. In gene pool recombi-
nation a new string is computed by randomly
taking for each loci a gene from the distribu-
tion of the selected parents. This means that
gene z; occurs with probability p®(z;) in the
next population. p®(z;) is the distribution of
z; in the selected parents. Thus new strings x
are generated according to the distribution

n

p(xt +1) = [ p}(xi,t)
i=1

(3)

One can simplify the algorithm still more by
directly computing the univariate marginal
frequencies from the data. Equation 3 is used
to generate new strings. This method is used
by the Univariate Marginal Distribution Algo-
rithm (UMDA).

UMDA

e STEP 0: Set t « 1. Generate N > 0
points randomly.

e STEP 1: Select M < N points accord-
ing to a selection method. Compute the
marginal frequencies pj(z;,t) of the se-
lected set.

¢ STEP 2: Generate N new points ac-
cording to the distribution
p(x,t+1) = [[;", p°(z4,t). Set t < t+1.
e STEP 3: If termination criteria are not
met, go to STEP 1.

Let v = > i ;(m; + 1). UMDA formally de-
pends on v parameters, the marginal distri-
butions p;(z;). We now interprete the aver-
age f(t) =Y., p(z,t)f(z) as a function which
depends on p;(z;). To emphasize this depen-
dency we write (in accordance with Wright)

W(p) = W (p1(0),p1(1), ..., pn(ma)) = F(t)
(4)

We can now formulate difference equations, de-

scribing the dynamic behavior of p;(z;).

Theorem 1. For infinite populations and pro-
portionate selection UMDA changes the gene



frequencies as follows:

pi(zi,t+1) = pi(%i)%

where f_’i(xiat) = Zx,Xi:wi f(x) H;’L;éipj(wjat)'
Using a formal derivative %, the equations
can also be written as

()

oW
1) i) ~ w

(6)
Furthermore the average fitness W never de-
creases.

pi(zg,t + 1) = pi(xg, t) + pi(zs,

W(p(t+1)) = W(p(?)) (7)

The theorem has been proven in [3]. Note
that the derivatives of W are obtained by
formal differentiation of equation (4). We
discuss the theorem with a simple example, a
linear function.

Example: f(z) =), a;z;, x; €{0,1}

After some tedious manipulations one obtains:

W(p) = Z aipi(1)
ow
RS St

J#i
We obtain the difference equation
a;

Zi a'ipi(la t)

This equation has been approximately solved
in [4]. O

Api(1) = pi(1,2) (1—pi(1,1)) (8)

This example shows that the expressions for
W and its derivatives can be surprisingly sim-
ple. W(p) can formally be obtained from f(z)
by exchanging x; with p;(1). But the formal
derivative of W (p) cannot be computed from
the simple W (p) expression! This problem will
be investigated in the next section.

Wright’s equation is obtained from equation 6
by using real derivatives in Euclidian spaces.
Thus we have to eliminate one parameter for
each locus. In order to minimize possible
confusion later we denote the average fitness
W(p) = f(t) with parameters p;(0) eliminated
as W.

Definition:  Let A; = A; \ {0}. If we
eliminate p;(X;=0,t) in W(p) by inserting
1 — > s.eh, Pi(wi, ) then we obtain W(p).

We can now formulate the main theorem.

Theorem 2 (Wright’s Equation). For in-
finite populations and proportionate selection
UMDA changes the gene frequencies as fol-
lows:

pi(zi, t + 1) = pi(zi,t) + pii, t)-
oW

. Opi(zi)

oW
2yieh; PilYis ) 50y

W (p)

Proof: Note that
oW
Opi(x;)

Furthermore we have

> pilwit) filwi,t) = W(t)

T, EN;

= fi(zi,t) — fi(0, )

We next compute for z; € A;

il t) = Wip(0) =50t = 0.0
Yi€A;
_ oW
yize;\ipi(yi,t)fi(yi’t) —y%ipi(yi,t)m

Inserting this equation into the difference
equation 5 gives the conjecture. U

This is the exact formulation of Wright’s equa-
tion for multiple alleles at n loci. For bi-
nary alleles we obtain equation 1. The above
equations completely describe the dynamics of
UMDA with proportionate selection.

The equation has been proposed by Wright
[8] for theoretical analysis of population ge-
netics. There has been a fierce battle between
Wright and Fisher concerning the importance
of Wright’s equation. Fisher especially criti-
cized Wright’s average fitness function W. He
wrote [2]: “Prof. Wright confuses the num-
ber of genotypes, e.g. 3199 (for 1000 loci)



which may be distinguished among individu-
als, with the continuous field of variation of
gene frequencies. Even if a potential function,
such as W is supposed to be, really existed,
the large number of genotypes supplies no rea-
son for thinking that even one peak, maximal
for variations of all gene ratios should occur in
this field of variation.”

Wright was not able to refute this argument.
In 1963 he wrote [11]: “The summation in the
formula for W has, however, as many terms
as there are kinds of genotypes, 31990 for 1000
pairs of alleles. This, of course, points to a
practical difficulty in calculating Ap for more
than two or three pairs of interacting factors,
unless a regular model is postulated. There
was no confusion.”

We will show in the next section that both,
Fisher and Wright, overlooked that if the fit-
ness function is simple, W can be easily com-
puted. This is discussed next.

3 Average Fitness and the
Landscape Metaphor

Wright is also the father of the landscape
metaphor in population genetics. But Wright
actually used two quite different definitions
for the landscape, apparently without realiz-
ing the fundamental distinction between them.
The first describes the relation between the
genotypes and their fitness, while the second
describes the relation between the allele fre-
quencies in a population and its mean fitness.
The first definition is just the fitness function
f(z) used in evolutionary computation, the
second one is the average fitness W (p). The
second definition is much more useful, because
it lends to a quantitative description of the
evolutionary process, i.e. Wright’s equation.
Theorem 1 further shows that for binary alle-
les the population evolves uphill on the W(p)
landscape at a rate proportional to its gradi-
ent.

For notational simplicity we only show how
to compute W for binary alleles. Let o =
(a1,...,a,) with a; € {0,1} be a multi-index.
We define with 00 := 1:

x% = | |:1:q"
7
i

Definition: The representation of a binary

discrete function using the ordering according

to function values is given by
fx)=f0,...,00)1 —z1)--- (L —zp) + ...
+f(1,..., Dz -- (10)

-"En

The representation using the ordering accord-
ing to variables is

flx)= Zaaxo‘ (11)

aq # 0} is called the

max{|al; = >, q; :
order of the function.

In both representations the function is linear
in each variable z;. The following lemma is
obvious.

Lemma: The two representations are unique.
There exist a unique matric A of dimension
2™ % 2™ such that

Qo = (Af)a

We now use this result for W. Let S; =
{ail > oker, ti(zi) < 1L 0 < gi(zi) < 1} and
S =], Si the Cartesian product. For binary
alleles we have S = [0, 1]".

Lemma: W (p) := f(t) is an extension of
f(z) to S. There exist two representations for

W (p). These are given by
W (D) =F(0,..,0)(1 —pr)-~ (L~ pn) + ...
+f(1a"'al)pl"'pn (12)
(13)

W(p) = Z aap”

Equation 12 is the definition of average fit-
ness. The computation is exponential in 7.
But if the function is given in analytical form
(Equation 11) and the order of the function is
bounded by a constant independent of n, then
W (p) can be computed in polynomial time.
Equation 13 can also be used to compute the
derivative of W. It is given by

= Z aapa,

ala;=1

oW (p)
Opi(1)

(14)

with o = 0,0} = ;.
We will now characterize the attractors of
UMDA.



Theorem 3. The stable attractors of UMDA
with proportionate selection are at the cor-
ners of S, i.e. p; € {0,1}, i = 1,...,n.
The stable attractors are local mazima of f(x).
A local mazimum is a mazimum with respect
to one bit changes.
are only saddle points where grad W (p)) =
0. UMDA solves the continuous optimization
problem argmax{W (p)} in S by gradient as-
cent.

In the interior there

Proof: W is linear in p;, therefore it cannot
have any local maxima in the interior. Points
with grad W (p) = 0 are unstable fix points of
UMDA.

We next show that boundary points which are
not local maxima of f(z) cannot be attractors.
We prove the conjecture indirectly. Without
loss of generality we choose the boundary point
p = (1,...,1). We now take an arbitrary
neighbor, i.e p* = (0,1,...,1). The two points
are connected at the boundary by

plz) = (1

We know that W is linear in the parameters p;.
Because W (p*) = f(0,1,...,1) and W(p) =

—z1,...,1)  z€[o0,1]

f(1,...,1) we have
W(p(2)) = f(1,...,1)+
z-[f(0,1,...,1) — f(1,...,1)]. (15)

If f(0,1,...,1) > f(1,...,1) then p cannot
be an attractor of UMDA. The mean fitness
increases with z. O

The extension of the above lemmata to mul-
tiple alleles and multivariate distributions is
straightforward, but the notation becomes dif-
ficult. Multivariate distributions are used by
an extension of UMDA, the Factorized Distri-
bution Algorithm FDA [5, 6]

4 The Selection Problem

Fitness proportionate selection is the undis-
puted selection method in population genet-
ics. It is considered to be a model for natural
selection. But this selection method strongly
depends on the fitness values. When the pop-
ulation approaches an optimum, selection gets
weaker and weaker, because the fitness values

become similar. This behavior can be derived
from Equation 6. The step-size decreases if p;
approaches 0 or 1. This slows down the con-
vergence near the corners.

Therefore breeders of livestock use other se-
lection methods. For large populations they
mainly apply truncation selection. It works as
follows. A truncation threshold 7 < 1 is fixed.
Then the 7N best individuals are selected as
parents for the next generation. These parents
are then randomly mated.

We mainly use truncation selection in our al-
gorithms. Another popular scheme is tourna-
ment selection of size k. Here k individuals
are randomly chosen. The best individual is
taken as parent. Unfortunately the mathemat-
ical analysis for both selection methods is more
difficult than for proportionate selection. An-
alytical results for tournament selection have
been first obtained by Miihlenbein [3].

We have been able to compute Wright’s
equation for tournament selection for one
of the simplest cases, the linear function
OneMaz(n) = ), z;. If we consider the spe-
cial case of p1(0) = p2(0) = ... = pr(0) := p(0)
we obtain a difference equation with just one
parameter [3]. We only give the difference
equation for 3 variables.

p(t+1) =p(t) +p(t)(1 - p(t)-
- (1= 2p(t) + 4p(t)* — 4p(t)* + 2p(t)*)  (16)

The highest exponent of p is 2 * 3, for general
n the exponent is 2n. This shows that even for
the linear One M ax function we now encounter
the problem Fisher mentioned. The computa-
tion of W (p) becomes very difficult. We have
not been able to solve the above equation ana-
lytically. Using the theory of breeding we have
computed an approximate difference equation.
It is given by [3]

np(t)(1 —p(t)) (17)

where [ is called selection intensity. For tour-
nament selection of size 2 we have I = 1/4/7.
The reader interested in this approximation is
referred to [3].

For proportionate selection we have the simple
expression W = >_; pi = np. This gives

1 _ 1 —p(t) (
np(t) n

P+ 1) =p(0) +

p(t+1) = p(t) (1-p()) 18)



The three difference equations 16,17, 18 are
compared in Figure 1. The initial value is
p(0) = 0.1. Proportionate selection moves at
first stronger than tournament selection to the
attractor, but then it slows down. At genera-
tion 7 tournament selection overtakes propor-
tionate selection. The approximation given by
Equation 17 is fairly good. It even gets better
for larger n.
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Figure 1: Comparison of selection methods for
OneMax(3), Approx. equation 17

5 Summary and Outlook

The paper has shown that the interaction be-
tween classical population genetics and evolu-
tionary computation can be fruitful. But it
is not a one way. Evolutionary computation
can contribute to population genetics and vice
versa.

Because of space limitations, we discuss the
application of Wright’s equation in a separate

paper.
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