Application of Wright’s Equation in Evolutionary Computation
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Abstract: In this paper we apply Wright’s equation to a specific fitness function defined by Wright
himself. We introduce mutation into Wright’s equation and our Univariate Marginal Algorithm UMDA.
We show that mutation moves the stable attractors from the boundary into the interior. We compute
optimal mutation rates for proportionate selection and truncation selection.
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1 Introduction

In this we show that Wright’s equation can
be used to solve some difficult problems in
evolutionary computation. We have rediscov-
ered Wright’s equation during the analysis of a
powerful evolutionary algorithm using univari-
ate marginal distributions (UMDA) instead of
recombination and mutation of strings as it is
done by genetic algorithms. A specific instance
of this algorithm can be mathematically de-
scribed by a set of difference equations. We
later found that these equations have been pro-
posed in population genetics by Sewall Wright
as early as 1931 [5]. The key formula is for
binary alleles as follows:

IW

Api = pi(t +1) —pi(t) = pi(t) (1~ pi(0)) 3o
1)

where ¢ denotes a locus, and p; is the frequency
of gene i being 1. Wright’s extension to mul-
tiple alleles is wrong and therefore omitted.
This equation is approximate valid in popu-
lation genetics. It is exact for the algorithm
UMDA with a large population and propor-
tionate selection.

2 The UMDA Algorithm

Let x (z1,...,zn) denote a vector,
x; € Ay ={0,1,2,...,m;}. A; just represents
a set of m; + 1 symbols, representing the
different alleles. We use the following con-
ventions. Capital letters X; denote variables,
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small letters x; assignments. Let a function
f : X — IR5¢ be given. We consider the
optimization problem x,,; = argmax f(x).
Definition: Let p(x,t) denote the proba-
bility of x in the population at generation t.
Then p;(zi,t) = >y x,—y, P(X,t) defines the
univariate marginal distributions of variable
X;.

Note that »° .4 pi(zi,t) = 1. This means
that the parameters of the univariate marginal
distributions are not independent. For nota-
tional simplicity we choose p;(0) to be the de-
pendent parameter. It can be eliminated, if
appropriate. We write p;(zy) if just one gen-
eration is discussed.

The univariate marginal frequencies are used
by our Univariate Marginal Distribution Algo-
rithm (UMDA).

UMDA

e STEP 0: Set t « 1. Generate N > 0
points randomly.

e STEP 1: Select M < N points accord-
ing to a selection method. Compute the
marginal frequencies pj(z;,t) of the se-
lected set.

e STEP 2: Generate N new points ac-
cording to the distribution
p(x,t+1) = [[1, p*(=i, t). Sett < ¢t+1.

e STEP 3: If termination criteria are not
met, go to STEP 1.

Let v = Y7 ;(m; + 1). UMDA formally de-
pends on v parameters, the marginal distri-



butions p;(z;). We now interprete the aver-
age f(t) =Y., p(z,t)f(z) as a function which
depends on p;(z;). To emphasize this depen-
dency we write (in accordance with Wright)

apn(mn)) = f(t)

(2)
We have proven that UMDA with an infinite
population and proportionate selection can ex-
actly be described by equation 1 [4].

W (p) = W (p1(0),p1(1),...

3 Wright’s Simple Illustration

Wright was not able to use his equations for
analytical or numerical computations. They
are too difficult for manual computation.
Therefore Wright constructed a simple exam-
ple to illustrate the application of the equa-
tions. This example he used from 1963 on.
Wright informally defined the example as fol-
lows [6]. “Four equivalent factors are as-
sumed to act additively without dominance on
a quantitatively varying character but selective
value is assumed to fall off with the square of
the deviation from the mean. It is next as-
sumed that there are small additive pleiotropic
effects on selective value at two of the loci. Val-
ues are chosen so that there are six selective
peaks at three levels (of fitness 1, 1.125, 1.25),
a lowest, four intermediate, and a highest.”
Wright further noted: “As constructed, the
population would tend to become fixed at any
of the selective peaks but it must be supposed
that this is prevented by recurrent mutation
at low rates.” Mutation will be discussed in
Section 5.

Wright’s example consists of a diploid or-
ganism with four loci with binary alleles
{4,a;B,b;C,c; D,d}. We have to transform
this example to a haploid organism. We just
map (4, A),(B,B),(C,C),(D,D) to allele 1
and the other three combinations to 0. Fur-
thermore we multiply the fitness values by 8 in
order to obtain integer values. Then Wright’s
fitness function can be mathematically be writ-
ten as

f($1,$2,$3,$4) = 7(.’131 + .’132) + 6(333 + x4)
—4(z122+ 123+ T1 T4+ Tor3 + ToTs + T3T4)

(3)

We abbreviate p; := p;(1). Then we obtain

from our lemma

W (p1,p2,p3,p1) = 7(p1 + p2) + 6(p3 + pa)

—4(p1p2 + p1p3 + p1pa + pop3 + paps + p3ps)
(4)

The derivatives are given by

% =T7—4(p2 +p3 + p4)
% =7 —4(p1 +p3 + pa) 5)
‘STVZ =6 —4(p1 + p2 + p4)
% =6 —4(p1 +p2 + ps3)

Now Wright’s equation can be used for anal-
ysis. Setting grad W = 0 we obtain a saddle
point at p; = pa = 5/12 and p3 = ps = 2/3.
Wright gives in his figures some curious num-
bers about local saddle points, despite he obvi-
ously used his formula not in a mathematical
sense.

The local maxima and therefore the at-
tractors of UMDA are the six geno-
types with two bits on and two bits
oft. =~ We have (0,0,1,1) with fitness 8,
(1,0,1,0),(1,0,0,1),(0,1,1,0),(0,1,0,1) with
fitness 9, and (1,1,0,0) with fitness 10.
One would be interested to characterize the
attractor regions for these six maxima. But
this is a formidable task in four dimensions.
In order to get some results, we make a sim-
plification. The equations are symmetric in
p1,p2 and ps3, ps. If we start with equal proba-
bilities p; = po and p3 = p4, then the dynamics
depends on two variables only. But note that
with this constraint the four intermediate local
maxima, are not accessible for the dynamics.
Figure 1 is a plot of the W landscape. The
saddle point p; = 5/12 and p3 = 2/3 can be
clearly recognized. There are two attractors at
the boundary, a local maximum (0,1) and the
global maximum (1,0). Even using the picture
it is very difficult to determine the attractor
regions. The following two regions are easy to
determine. If p; > 5/12 and p3 < 2/3 then the
attractor is (1,0). If p; < 5/12 and p3 > 2/3
then the attractor is (0,1). For the remain-
ing area the attractor has to be determined by
actual simulation.

But the assumption p; = py and p3 = p4 is
very restrictive and unstable. Small differences
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Figure 1: W landscape for p; = py and p3 = py

in the initial values may have a dramatic im-
pact. If the initial values of p; and po differ
only slightly, then often this difference is in-
creased, so that UMDA converges to one of
the intermediate maxima. Table 1 shows some
examples obtained by using equations (1) and

(5)-

D1 P2 P3 pa | p7 | PS5 | P§ | pPY
0.11 [ 0.10 | 0.26 0.25 1] 110 0
0.11 | 0.10 | 0.24 0.25 ol 1]0 1
0.11 | 0.11 | 0.24 0.24 1] 110 0
0.11 | 0.11 | 0.25 0.25 0] 011 1
0.11 | 0.10 | 0.24 0.24 11 0]05]|05
0.11 | 0.10 | 0.2401 | 0.24 11 01 0
1.00 | 0.00 | 0.90 0.90 1| 0]05]|05
1.00 | 0.00 | 0.10 0.10 1] 0]05]|05
1.00 | 0.00 | 0.90 0.901 1 01]0 1

Table 1: Convergence from different initial val-
ues

The table reveals that there exist lower dimen-
sional attractors of UMDA. One example is the
point (1,0,0.5,0.5). In four dimensional space
it is a saddle point, but in two dimensions it
is an attractor. If the initial values are at the
boundary, e.g. p1 = 1,po =0 and p3 = ps > 0
then UMDA converges to ps = ps = 0.5. But
if p3 < pg UMDA converges to an intermediate
attractor (1,0,0,1).

Despite its importance for theoretical popula-
tion genetics, Wright’s equation was seldomly
used quantitatively. To the best of our knowl-
edge, only Barton [1] has numerically applied
Wright’s equation. Unfortunately he did not

use Wright’s original example, but a simpler
function with only one level of local optima.
Furthermore he computed the average fitness
with a complicated approximation valid only
for Gaussian fitness values.

We now turn to a major problem using
Wright’s equation for optimization. The equa-
tion is valid for proportionate selection only.
In the next section we will investigate if for
other, more efficient selection methods, dif-
ference equations similar to Wright’s equation
can be computed.

4 The Selection Problem

We have shown a number of times that pro-
portionate selection is not good for optimiza-
tion. Unfortunately it seems too difficult to
generalize Wright’s equation to other selection
schemes like tournament selection or trunca-
tion selection. For the function OneMaz =
>~ x; we have proven the approximation ([3])

plt+1) ~plt) = O —p0) ()
Despite the analytical difficulties in investing
tournament selection, its numerical implemen-
tation is not difficult at all. It is even easier
to implement than proportionate selection! In
figure 2 we compare actual UMDA runs for

Wright’s function without mutation.
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Figure 2: Comparison of selection methods
for Wright’s function; initial values (p; =
pP2,P3 = p4): A(0416,0667), B(045,07),
and C:(0.45,0.6)

The three runs started with slightly differ-
ent initial conditions. The first one starts



nearby the saddle point p; = ps = 5/12,
p3 = p4 = 2/3. The initial conditions for the
second run are in conflict. For p; = po = 0.45
the UMDA gradient points to p1 = po = 1
but with p3 = ps = 0.7 UMDA would like to
go to p3 = ps = 1. But the fitness value of
(1,1,1,1) is only 2. This is not possible, be-
cause the average fitness always increases. The
initial conditions for the third run are within
the attractor region of the global optimum.
We first discuss the results for proportionate
selection. The first run, propA, remains for
quite a time at the saddle point. It enters a
second plateau at average fitness 8. The final
attractor is an intermediate maximum with fit-
ness 9. The second run, propB also remains
for quite a time at an average fitness value of
about 7. It then moves to the final attractor,
which is also an intermediate maximum. The
third run, propC heads very fast to the global
optimum, as expected.

Wright claimed that the first two runs are typi-
cal for evolution. He called it the Shifting Bal-
ance Theory of Ewvolution [7]. On a plateau
selection is not able to move the population
uphill in the W landscape. But genetic drift
considerably changes the genotypic frequen-
cies. Then, out of a sudden, the average fit-
ness increases fast. Now selection is moving
the population uphill till another plateau is
reached. This behavior is shown below.

selection

For tournament selection the picture is totally
different. Tournament selection converges to
the global optimum for all three initial condi-
tions. Furthermore it converges much faster
than proportionate selection. There exist no
plateau for tournament selection. Plateaus
strongly depend on the selection intensity. For
Wright’s function tournament selection even
has a larger attractor region of the global op-
timum.

5 Mutation, Bayes Prior, and
Population Size

In Wright’s equation all local optima are at-
tractors at the boundary. This is not desirable,

because the population cannot leave such an
attractor. Evolution would just stop. There-
fore Wright included mutation into his equa-
tion as a background operator. With muta-
tion the local attractors are not at the bound-
ary, but in the interior. Thus the population
does not converge to a unique genotype. At
equilibrium the population consists of differ-
ent genotypes generated from constant gene
frequencies.
Wright included mutation with a recurrent
symmetric mutation rate of 0 < p < 1 as fol-
lows into his equation
W
Op;
Ap; = pi(t)(1—pi(t)) W —pu(pi(t) = (1-pi(t))
(7)
This is a simplification of the biological process
to be modeled. Mutation is selective neutral,
i.e. it occurs after selection. Nevertheless, the
equation fulfills its goal — to move the attrac-
tors from the boundary to the interior.
Let us take OneMax = > z; as example.
Without mutation the attractor is obviously
pi =1, ¢+ =1,...n. With mutation the at-
tractor is obtained from setting Ap; = 0 in
equation 7. The attractor is given by
. p

p; =1 2%+ % (8)
For p = 0 we have p;=1, for 4 >> 0 we obtain
p; = 0.5. For pp = 1/n we compute p; = 2/3.
The attractor is in the interior. The global
optimum will be generated with probability

p(mopt) = p: :
For p = 1/n we compute for n = 20 the
value p(zop;) = 0.0032. Thus the probability
to generate the optimum is already very small.

Lemma: For p = 1/n the probability to
generate the optimum of OneMax goes to 0

for n — oo. For y = 1/n? the optimum will

be generated with probability e~ !.

Proof: For y = 1/n we have
P(Topt) =(1—1/3)" =0

For y = 1/n? we compute

1
o~ 1
—(1———n yn_(]_ n
p(‘ropt) ( 2/n2+1/n) ( 2_|_n)
—~ et



This result shows again that proportionate
selection selects very weak. If selection is
stronger, a higher mutation rate can be used.
We derive a result for truncation selection by
inserting mutation into equation 6.

Ap; = %\/ﬂpi(t)(l —pi(t)) — 2upi(t) + p

For tournament selection we have I = 1/y/7 =
0.56. Setting Ap; = 0 we obtain the expression

1 I
e R
Pi=3 2/ 1% + 4u?n

For n = 64 and u = 1/n we obtain p; = 0.959.
For 4 = 0.5/n we obtain p; = 0.988. Both
values are in excellent agreement with actual
simulation runs with UMDA. We next com-
pute the probability that at this attractor the
optimum is generated.

Theorem 1. Let the mutation rate be pu =
k/n. Then for tournament selection or trun-
cation selection with selection intensity I and
the linear fitness function OneMazx we have
) _E2

nlg{)lo (Topt) =€ 7 (9)
Proof: For u = k/n and keeping only factors
with 1/n we obtain

.1 I - k2 .
A G s At )
2
zef%

Wright introduced mutation to support his
Shifting Balance Theory of Evolution ([7]).
Mutation should enable the population to
leave attractors of intermediate fitness. In or-
der to increase the possibility to leave interme-
diate attractors Wright in addition introduced
the population size N via the variance of the
population.

We solve both problems in a concise statis-
tical manner. The technique is called Bayes
prior. Usually the empirical probabilities are
computed by the maximum likelihood estima-
tor. For N samples with m < N instances of
z the estimate is defined by

For m = N we obtain p(z) = 1 and for m =0
we obtain p(z) = 0. This leads to the gene fix-
ation problem, because both values are attrac-
tors. The fixation problem is reduced if p(z)
is restricted to an interval 0 < ppin < p(z) <
1 —pmin < 1. This is exactly what results from
the Bayesian estimation. The estimate p(z)
is the expected value of the posterior distribu-
tion after applying Bayes” formula to a prior

distribution and the given data. For binary
variables z the estimate
m—+r
p(z) = 10
pla) = o (10)

is used with > 0. r is derived from a Bayesian
prior. r = 1 is the result of the uniform
Bayesian prior. The larger r, the more the
estimates tend towards 1/2. The reader in-
terested in a derivation of this estimate in the
context of Bayesian networks is referred to [2].
We now incorporate this estimate into UMDA
with proportionate selection. The frequencies
are changed as follows:

pi(t)N +r
N + 2r

where p?(t) is given by Wright’s equation 1.
Setting v = /N we obtain

pi(t+1) =

A@u)zm@y+m@x1—mu»%§+ij§5
-1 _?_727 (pi(t) +pi(t)(1 —pi(t))%) (11)

Note that equation (11) is identical to equation
(7) if we set the mutation rate p = v/(1+27).
We are now able to compute the attractors for
a given mutation rate by setting Ap; = 0. For
v = 0 the attractors are at the boundary, for
v — oo we have a single attractor at p; = 0.5.
All attractors have collapsed into a single one.
But this attractor is just the attractor of a
random search.

We next compute the attractors for Wright’s
function. Equation 11 is a system of
four nonlinear equations. Solutions can
only be computed numerically. To sim-
plify the computation we make the assump-
tion that pi=p2 and ps=pg4. For r=20
and N=1000 we obtain three solutions at
(0.158871,0.889656), (0.349797,0.723039) and
(0.932256,0.0914656). The second solution is



unstable, so we have two attractors. The first
one is near to the local maximum, the second
one is near to the global optimum (0,0,1,1).
Next we increase r from 20 to 40. Now we ob-
tain only one attractor at (0.864838,0.171577).
This attractor has moved from the global op-
timum. The attractor of the local maximum
has vanished. Thus the bimodal fitness land-
scape has been changed to a unimodal one by
increasing the mutation rate. At this attrac-
tor the optimum is generated with probability
0.02.

The above investigations can be used to ob-
tain estimates for the population size and the
mutation rate for tournament selection. From
statistical arguments N should be some mul-
tiple of n for large n (i.e. m > 30) [4]. In
order to determine r/N we observe the follow-
ing. If /N is too low, the attractors change
only a little. If 7 /N is too large, then the at-
tractor is in the interior, far away from the
global optimum. But we do not want to move
the attractors so far into the interior, that it
is highly improbable to generate the optimum.
This argument gives our goal. /N should be
so large that the attractors are far away from
the attractors at the boundary. But the at-
tractor in the vicinity of the global optimum
should be near enough, so that the optimum
will be generated with certain probability.
Because it is too difficult to analytically
compute the attractors for each given fitness
function, we use the result for OneMax. This
gives our rule of thump.

Rule of Thumb: For UMDA with tourna-
ment or truncation selection use a population
size of N = 3n and a Bayes prior of r = 1/n
for a problem of size n.

6 Summary and Outlook

The paper has shown that the interaction be-
tween classical population genetics and evolu-
tionary computation can be fruitful. Evolu-
tionary computation can contribute to popu-
lation genetics and vice versa.

By analytically investigating the attractors
of the combined selection/mutation field, we
have been able to derive mutation rates which
optimally support the search process.

We have been extended the UMDA algorithm
to a population based search algorithm which
uses more complex distributions. Numerically
such an algorithm can be used if the distribu-
tion can be factored into a small number of
distributions with only a small number of pa-
rameters. This algorith we call the Factorized
Distribution Algorithm FDA [4]. The theory
presented here can also be used for FDA.
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