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Abstract

FDA - the Factorized Distribution Algorithm - is an evolutionary algorithm which
combines mutation and recombination by using a distribution instead. The distri-
bution is estimated from a set of selected points. In general a discrete distribution
defined for n binary variables has 2" parameters. Therefore it is too expensive to com-
pute. For additively decomposed discrete functions (ADFs) there exist algorithms
which factor the distribution into conditional and marginal distributions. This fac-
torization is used by FDA. The scaling of FDA is investigated theoretically and
numerically. The scaling depends on the ADF structure and the specific assignment
of function values. Difficult functions on a chain or a tree structure are solved in
about O(n+/n) operations. More standard genetic algorithms are not able to opti-
mize these functions. FDA is not restricted to exact factorizations. It also works for
approximate factorizations as is shown for a circle and a grid structure. By using
results from Bayes networks, FDA is extended to LFDA. LFDA computes an ap-
proximate factorization using only the data, not the ADF structure. The scaling of
LFDA is compared to the scaling of FDA.
Keywords

Genetic algorithms, Boltzmann distribution, simulated annealing, Bayes network,
learning of Bayes networks, convergence, factorization of distributions.

1 Introduction

Numerically the deficiencies of genetic algorithms using Mendelian string based recom-
bination methods have been first demonstrated with a simple class of fitness functions,
called deceptive functions of order k. They are defined as a sum of more elementary
deceptive functions fi of k variables (Goldberg et al. 1993).

l
16 = 3 fulss), (1)

where s; are non-overlapping substrings of x containing %k elements.

In a deceptive function the global optimum z = (1,...,1) is isolated, whereas
the neighbors of the second best fitness value z = (0,...,0) have large fitness values.
Genetic algorithms (GAs) are “deceived” by the fitness distribution. Most GAs will
converge to z = (0,...,0).

Deceptive functions are separable. They are trivial to optimize by mathematical
methods. In this paper we consider functions which are additively decomposed (ADF),
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but they need not be separable. This class of functions is of great theoretical and prac-
tical importance. Optimization of an arbitrary function in this space is NP complete.

A number of new evolutionary algorithms have been proposed which optimize ADF's
better than genetic algorithms. These algorithms try to detect and exploit the structure
of an ADF. The methods used can be classified as follows:

¢ Adaptive recombination

e Explicit detection of relations (Kargupta & Goldberg, 1997)

e Dependency trees (Baluja & Davies, 1997)

e Bivariate marginal distributions (Pelikan & Mihlenbein, 1998)

e Estimation of distributions (Miihlenbein & Paaf8(1996), De Bonet et al., (1997),
Harik (1999), Pelikan et al. (1999))

Adaptive recombination uses a number of heuristics to modify two-parent recombi-
nation. Kargupta’s (1997) Gene Expression Messy Genetic Algorithm (GEMGA) tries
to detect dependency relations by manipulating individual substrings.

The last three methods are based on probability theory and statistics. They use
the statistical information contained in the population of selected points to detect de-
pendencies. In this paper an algorithm called the Factorized Distribution Algorithm
(FDA) will be investigated. FDA uses a factorization of the distribution of selected
points. For Boltzmann distributions FDA is based on a solid mathematical founda-
tion. Many results can be derived by mathematical analysis. Therefore this paper is a
mixture between theoretical analysis and numerical experiments. The experiments are
mainly used to confirm the theoretical analysis.

The outline of the paper is as follows. In Sections 2 and 3 some basic theorems
about factorization and FDA are cited. Then FDA is analyzed for large (infinite) pop-
ulations. A comparison is made between Boltzmann selection and truncation selection.
In Section 5 finite populations are investigated. The concept of critical population size
is introduced. Numerical results for an ADF test suite on simple regular ADFs are pre-
sented in Section 6. The problem of computing a factorization of an ADF with unknown
structure is discussed in Section 7 with LFDA.

2 Factorization Theorem

In this section we recall the main results proven in Miihlenbein et al. (1999a). We use
the notation most common in statistics. Large symbols denote variables, small symbols
assignments, bold symbols are vectors. xs denotes the sub vector of X with indices
from s.

Definition: An additively decomposed function (ADF) is defined by

fx) = filws) S={s1,...,s} s CX. (2)

8; €S

Next we define a search distribution. For theoretical analysis we will use a generaliza-
tion of a Gibbs or Boltzmann distribution.
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Definition: The Gibbs or Boltzmann distribution of a function f is defined for u > 1
by

_ Exp, f(x)

p(x) : 7,

3)
where for notational convenience

Exp, f(x) := /™ F,:=) Exp, f(y)

Remark: The Boltzmann distribution is usually defined as e /Z. The term g(x)
is called the energy. Setting g(x) = —f(x) and u = eT gives Equation 3. Z = F,, is
called the partition function.

The Boltzmann distribution has the following property: the larger the function
value f(x), the larger p(x) (for v > 1). Such a search distribution is obviously suitable
for an optimization problem. Unfortunately the computation of the Boltzmann distri-
bution needs an exponential effort (in the size of the problem). There are at least two
approaches to reduce the computation: to approximate the Boltzmann distribution or
to look for ADFs where the distribution can be computed in polynomial time. The first
approach is used by Simulated Annealing (Aarts et al., 1997). FDA is based on the sec-
ond approach. The distribution is factored into a product of marginal and conditional
probabilities. They are defined for b;,c; C X

plze) = Y, ) (4)
plan o) = Pete) 6

The basic factorization theorem uses the following sequence of sets as input.

Definition: Given a set of sets S = {s1,...,s}, we define for i =1,2,... 1 sets d;,b;
and ¢;

d; = Uj’:1 55 (6)
bi = 8; \ di—l (7)
¢ =8 Nd;j 1 (8)

We set dy = 0.
In the theory of decomposable graphs, d; are called histories, b; residuals and ¢; sepa-
rators (Lauritzen 1996).

Theorem 1 (Factorization Theorem). Let p(x) be a Boltzmann distribution on X
with

_ Exp, /()

p(x) = with u > 1 arbitrarily. 9)
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If

b #0 Vi=1,...,l; d =X, (10)
Vi > 235 <i such that ¢; C s; (11)

then

The proof can be found in Mihlenbein et al. (1999a). Equation 11 is called the
running intersection property. The class of ADFs allowing an exact factorization which
can be computed in polynomial time in n is severely restricted. Many ADF's are defined
on a two dimensional grid. Here the sets needed for an exact factorization grow like
O(y/n) where n is the number of variables of the grid. Therefore the computational
complexity scales exponentially.

3 The Factorized Distribution Algorithm

We assume that an ADF and a factorization of the probability distribution is given. The
factorization can also be used at the initialization. For faster convergence a proportion
of r * N individuals will be generated with a local approximation of the conditional
marginal distributions. The method will be explained in Section 3.2

FDA,

e STEP 0: Set t <« 0. Generate (1 —r) x N > 0 points randomly and r * N points
according to Equation 16.

e STEP 1: Selection

e STEP 2: Compute the conditional probabilities p®(z,
points.

Z.,,t) using the selected

e STEP 3: Generate a new population according to p(x,t+1) = Hi’:1 p°(xp,

Ty t)
e STEP 4: If termination criteria is met, FINISH.

e STEP 5: Add the best point of the previous generation to the generated points
(elitist).

e STEP 6: Set t «t+ 1. Go to STEP 2.
FDA can be used with an exact or an approximate factorization. It uses finite

samples of points. Convergence of FDA to the optimum will depend on the size of the
samples. FDA can be run with any popular selection method.
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3.1 Analysis of the Factorization Algorithm

The computational complexity of FDA depends on the factorization and the population
size N. The number of function evaluations to obtain a solution is given by

FE =GEN, « N (13)

GEN, denotes the number of generations till convergence. Convergence means that
p(z,t+ 1) = p(z,t). The computational complexity of computing N new search points
is given by

compl(Npoints) = 1+ N (14)

The computational complexity of computing the probability is given by

1
compl(p) ~ (Z 2l5ily s M (15)

where |s;| denotes the number of elements in set s;, and M is the number of selected
points. Therefore we obtain that the amount of computation of FDA mainly depends
on [, the size of the defining sets s;, and the size of the selected population. In order
to exactly compute the probabilities an infinite population is needed. But a numerical
efficient FDA should use a minimal population size N* still giving good numerical
results. The computation of N* is a difficult problem for any search method using a
population of points. This problem will be discussed in Section 5.

We have implemented a simple factorization algorithm which computes a factorization
for any given ADF.

FDA - FAC

¢ STEP 0: Set i=1. Let §; be the sub-function which is maximally non-linear.
Non-linearity is defined as the square distance from the linear regression.

e STEP 1: Compute d; := U;:1 3.

e STEP 2: Select s; which has maximal overlap with d; and s, Nd; # 0.
e STEP 3: If no set is found: STEP 5

o STEP 4: Set §;41 = sk, t:=i+ 1. If i < goto STEP 1.

e STEP 5: Compute the factorization using Equation 6 with sets §;.

For simple structures like chains or trees, FDA-FAC computes an exact factoriza-
tion, for complex structures an approximate factorization. To compute a factorization
with minimal complexity for an arbitrary ADF is a very difficult task. We conjecture
that this problem is in NP. This research needs deep results from graph theory. The
problem of factorization of a probability distribution is also dealt with in the theory of

graphical models (Frey, 1998).
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3.2 Generation of the Initial Population

Normally the initial population is generated randomly. But if an ADF is given, initial
points can be generated using this information. The idea is to generate subsets x5, with
high local fitness values (i.e high f;) more often than subsets with lower values.

The following method has been implemented. The true Boltzmann distribution
p(z) is approximated by a distribution p(z) which uses the same factorization as p(x).
But the conditional probabilities are computed using the local fitness functions f; only.

Tey) = p@s) Exp, fi(2s;)
ci ﬁ(mci) Zy yiiz EXpu fl(ys,)

c;=Le;

p(wp; (16)

with 4 > 1. The larger u, the “steeper” the distribution. v = 1 yields a uniform
distribution. u can be chosen so that

1 x|z
Viﬂs“ysii _SIMSIO i:1,2,...,l
10 = pys:|ye:)

by setting
span := m?,x{rg%xm(-f) - fz(y)|}
W= 101/span

Let us take the the function OneMax(n) = ) x; as an example. Here we have the
factorization

p(x) = H p(z:)

FDA computes span = 1 and thus 4 = 10. This leads to

1 10

D ;= 0 = — D ;s = ]_ = —
Pz ) 11 Pl ) 11

There will be ten times more 1s than Os in the initial population.

Such an initial population might not give a Boltzmann distribution. Therefore
we generate only half of the population by this method. The other half is generated
randomly.

Next we will investigate FDA with Boltzmann selection and truncation selection in
infinite populations.

3.3 Convergence of FDA

Miihlenbein et al. (1999a) proved convergence of FDA if points are selected according
to a Boltzmann distribution with a given v > 1. In this case the distribution p® of the
selected points is given by

Exp, f(x)
> P(x,t) Exp, f(x)

One can easily show that if p(x,t) is a Boltzmann distribution, then p®(x,t) is also a
Boltzmann distribution. Because FDA computes new search points according to

p(x,t+1) =p*(x,1),
the following theorem easily follows (Miihlenbein et al. (1999a)).

p’(x,1) = p(x, 1) (17)
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Theorem 2. If the initial points are distributed according to p(x,0) = E’(p;if(z) with
u > 1, then for FDA the distribution at generation t is given by

_ Exp, f(x)
plx.f) = >, Exp,, f(¥) (18)

with w = u - v’

Remark: Boltzmann selection with fixed basis v > 1 defines an annealing schedule
with T'(t) = 1/(t*xIn(v) +1n(u)), where ¢ denotes the number of generations. Theorem 3
remains valid for any annealing schedule with lim;_,o, T'(¢) = 0.

Theorem 3 (Convergence). Let Xopt = {Z10pt, L20pt, .-} e the set of optima. Then
under the assumptions of Theorem 2

x € Xopt (19)
else

1
: — Xopt
Jim p(x,t) = {(') il

Therefore FDA with Boltzmann selection has a solid theoretical foundation. FDA
with Boltzmann selection can be seen as an “exact” simulated annealing algorithm.
Simulated annealing is controlled by two parameters — the number of trials N(T") for a
fixed temperature T' and the annealing schedule of the temperatures. These two param-
eters are also important for FDA. FDA generates all N points for a given temperature
by using the Boltzmann distribution. Therefore N can be called the population size.
The second parameter of FDA remains the annealing schedule. We will investigate
in Section 5 the difficult relation between N and annealing schedule for an efficient
numerical algorithm.

Numerically truncation selection is easier to implement. It works as follows. Given
is a truncation threshold 7. The best 7 x N individuals are selected. We estimate the
conditional probabilities of the selected points p®(zp, |z, ,t) from the empirical distribu-
tion. Then the factorization theorem is used to generate new search points according
to

l
p(x,t—1— 1) = Hps(.’):'bi |x0i7t)

i=1

Now the following problem arises. After truncation selection the distribution is not a
Boltzmann distribution. Therefore in general

Because of this inequality we might have p(@op,t + 1) < p°(2opt,t). This makes a
convergence proof difficult. For proportionate selection convergence has been shown by
Miihlenbein and Mahnig (1999b) for separable functions.
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4 Theoretical Analysis for Infinite Populations

We will investigate two linear functions with very different fitness distributions.

OneMaz,(z) = Zw, (20)
i=1

Int,(z) = Z2i_1mi (21)
i=1

OneMax has (n + 1) different different fitness values which are multinomially dis-
tributed. Int has 2™ different fitness values. For ADFs the multinomial distribution is
“typical”, i.e it occurs fairly often. The distribution generated by Int is more special.
Both functions are linear and therefore the following factorization is used

p(x,t+1) = H p(s, ) (22)

We first analyze OneMazx. Using Equation 18 we obtain.

Theorem 4. For Boltzmann selection with basis v the probability distribution for
OneMazx is given by

@)
p(x,t) = ( (23)

1+ vt)n
The number of generations needed to generate the optimum with probability 1 —e is given
by
GEN, ~ 2« (24)
¢~ In(v)

For truncation selection an approximate analysis was already done in (Miihlenbein
et al. (1993b), Miihlenbein, (1998)). For simplicity we assume that in the initial pop-
ulation all univariate marginal distributions are equal (p;(z; = 1,t = 0) := pg). Then
pi(z; = 1,t) := p(t) for all t.

Theorem 5. For truncation selection T with selection intensity I, the marginal proba-
bility p(t) obeys for OneMax

I,
p(t+1) = p(t) + —-vnp(t)(1 - p(?)). (25)
This equation has the approximate solution
I
p(t) = 0.5 1+ sin | —=t + arcsin(2py — 1) (26)
vn
where
vn

™ ,
t < (5 — arcsin(2py — 1)) T

T

The number of generations till convergence is given by

GEN, = (g — arcsin(2pg — 1)) ? (27)

T
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Figure 1: Probability p(t) for OneM ax(100) with Truncation selection and Boltzmann
selection

The relation between 7 and I, depends on the fitness distribution (Miihlenbein,
1998). Assuming that the fitness distribution is normal, I- can be computed from the
error integral. We approximately obtain

I, ~06k for 71=2"% 1<k<3

Asymptotically truncation selection needs more number of generations to conver-
gence than Boltzmann selection. GEN, is of order O(In(n)) for Boltzmann selection and
of order O(y/n) for truncation selection. But if the basis v is small (e.g. v = 1.2), and
€ = 0.01 then even for n = 1000 truncation selection converges faster than Boltzmann
selection.

The different behaviour of Boltzmann selection and truncation selection is shown in
Figure 1. Equations 23 and 26 are plotted for reasonable values of v and I. For v = 1.2
Boltzmann selection selects slightly stronger than truncation selection with I = 0.8
at the beginning. Boltzmann selection gets weak when the population approaches the
optimum. The same behaviour can be observed for v = 1.5. In fact, all selection
methods using proportionate or exponential proportionate selection have this problem.
If the fitness values in the population differ only slightly, selection gets weak. Truncation
selection does not have this problem. It selects much stronger than Boltzmann selection
when approaching the optimum. Therefore truncation selection with I = 1.6 converges
faster than Boltzmann selection for v = 1.5.

Recall that Boltzmann selection with fixed v gives an annealing schedule of
1/T(t) = t-In(v). The convergence of Boltzmann selection can be speeded up if the basis
v is changed during the run. But annealing schedules have to be discussed with finite
populations. For infinite populations strongest selection is obviously the best. For finite
populations the computation of an optimal annealing schedule is very difficult. This
will be discussed in the next section. Here we will only show that for OneMaxz FDA
with truncation selection also generates a Boltzmann distribution.

Evolutionary Computation  Volume 7, Number 1 9
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Lemma: Let the distribution be generated by p(x) = [], p(z;). Let p(z; = 1) := p;.
Then there exists Ty, ... , T, with

1 Di
— =1In 28
T; 1—pi (28)
so that for OneMax(n)
eXi=1 T;
px) = (29)

Z is the partition function, defined by Z = Zy e2i=1 /T

Proof: We have to show that [[ p(z;) = exp(} ;-)/Z Because exp (In(p; /(1 — p;))) =
pi/(1 — p;) one obtains

D1 Dn D1D2 H~Pi
Z =1+ 4o+ + 4 q i
1—p l—pn  (1—p)(1—p2) [L(1-pi)

This can be simplified to

1
.
H?:l (1—pi)
Noting that p(z; = 0) = 1 — p; the conjecture follows. O
Corollary If py = ... = p, := p then p(x) is a Boltzmann distribution with
f(=)
- 30)
p(x) = — (
where
1 P
— =2,
7 =g p (31)

For p = 1/2 we have T' = oo and for p = 1 we get T = 0. We can use Equation 25 to
compute p(t). Because the assumptions of Theorem 5 and of the corollary are identi-
cal, FDA with truncation selection generates a Boltzmann distribution with annealing
schedule

() G
TW o) OO —p®) e Var)

The annealing schedule depends on the average fitness f(t) and the variance Var(t) of
the population. In Table 1 the schedule is shown for n € {32,64,256}. 1/T'(¢t) first
grows linearly in ¢. This is the standard annealing schedule. But 1/7'(¢) increases non-
linear when approaching the optimum. For the first generation we have approximately
1/T(1) =~ 2I. //n.

Let us now turn to the analysis of the function Int. We first consider truncation
selection with 7 = 0.5 and a large population size. After one generation of selection the

(32)

10 Evolutionary Computation  Volume 7, Number 1
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t | mn=32| n=64 | n=256
1 | 0.2848 | 0.2006 0.1000
2 | 0.5785 | 0.4044 0.2005
3 | 0.8884 | 0.6135 0.3016
7 | 2.5878 | 1.5658 0.7179
8 | 3.3510 | 1.8574 0.8265
9 | 4.7853 | 2.1880 0.9376
10 0 2.5756 1.0517
11 3.0530 1.1693
12 3.6911 1.2907
13 4.7096 1.4168
14 00 1.5482
28 5.6610
29 7.5458
30 00

Table 1: Value of 1/T(t) for OneMax and 7 = 0.5

n-th bit will be fixed. The other bits will not be affected by selection. After the next
generation bit (n — 1) will be fixed etc. Convergence to the optimum is achieved after
n generations.

For truncation selection with 7 = 0.25 two bits will be fixed in every generation.
Convergence will be reached after n/2 generations. Therefore we obtain for Int

Theorem 6. For truncation selection with 7 = 27%;k > 1 we have for Int

GEN, = % (33)

Setting the selection intensity I, = k for 7 = 2% we obtain the same result as for
OneMazx: GEN, scales inversely proportionate to I.. But GEN, scales proportionate
to the problem size n. This is the worst case, as the following theorem shows:

Theorem 7. Let the optimum be unique. Let the population size be very large (N > 2™).
Assume that for truncation selection with T = 2~F we have p(Xopt) > p*(Xopt)- Then

GEN, < % (34)

Proof: In an infinite population the optimum is contained with probability 1/2". After
one step of selection the probability will be increased at least to 2% /2". In about n/k
steps the probability of the optimum has increased to 1. O

Next we analyze Boltzmann selection.

Theorem 8. Let f(x) = Int(n). Then for a Boltzmann distribution with v > 1 we
have

p(17 R 117 1) ~ v;l (35)
p(1,...,1,0) = %5t (36)
Proof: By definition
vf(®)

Evolutionary Computation Volume 7, Number 1 11
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Observing that > v/ =1+v + 0%+ .- + 2"~ we obtain

n

-1

30 = v*
v—1

Now the theorem easily follows. O

The theorem shows that for Int the Boltzmann distribution is concentrated around the
optimum, even for small values of v. For instance with v = 1.2 the global optimum is
contained with probability p = 0.167 in the population. Even a small v = 1.01 gives a
probability of about p = 0.01 for the optimum. Therefore the selected population has
a small diversity. In finite populations this will cause a problem. Some genes will get
fixed to wrong alleles. This will be investigated next.

5 Analysis of FDA for Finite Populations

In finite populations convergence of FDA can only be probabilistic.

Definition: Let € be given. Let P.ony(N) denote the probability that FDA with
a population size of N converges to the optima. Then the critical population size is
defined as

N*(e) = mj\ifn Poony(N)>1—¢ (37)

If FDA with a finite population does not convergence to an optimum, then a gene is
fixed to a wrong value. The probability of fixation is reduced if the population size is
increased. We obviously have for FDA

Pconv(Nl) S Pconv(NZ) Nl S N2

We show the cumulative fixation probability in Table 2 for Int(16). The fixation
probability is larger for stronger selection. For a given truncation selection the maximum
fixation probability is at generation 1 for very small N. For larger values of N the
fixation probability increases until a maximum is reached and then decreases again.
This behaviour has been observed for many fitness distributions.

Boltzmann selection with v = 1.01 gives a temperature of about 7" = 100. Even

for this temperature the selection is very strong for the fitness distribution given by
Int(16). For N = 700 the largest fixation probability is still at the first generation.
Therefore the critical population size for Boltzmann selection for v = 1.01 is very high
(N* > 700). For truncation selection with 7 = 0.25 we have N*(0.1) < 80.
Because Boltzmann selection in finite populations critically depends on a good anneal-
ing schedule, we normally run FDA with truncation selection. This selection method is
a good compromise. It has an important property, which we formulate as an empirical
law. It has been confirmed by many numerical experiments.

Empirical law: Let € be reasonable small, e.g. € = 0.1. Then the number of genera-
tions to converge to the optimum remains constant for N > N*(e).

GEN,(N*(€)) = GEN.(N) = GEN,(N = 00) N > N*(e) (38)

12 Evolutionary Computation  Volume 7, Number 1
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7=02 | 7=05|7=025| 7=05 Boltz. Boltz.
N=30 | N=30| N=80 | N=60 | N=500 | N =700
0.0955 0.0035 0.0 0.0 0.2520 0.0885
0.4065 0.0255 0.0025 0.0095 0.2980 0.1110
0.5955 0.1040 0.0165 0.0205 0.3180 0.1275
0.6880 0.2220 0.0355 0.0325 0.3295 0.1375
0.7210 0.3270 0.0575 0.0490 0.3385 0.1455
0.7310 0.4030 0.0695 0.0630 0.3435 0.1510
0.7310 0.4470 0.0740 0.0715 0.3505 0.1555
0.7310 0.4705 0.0740 0.0780 0.3530 0.1565
0.7310 0.4840 0.0740 0.0806 0.3555 0.1575

OO0~ T WN |+

Table 2: Cumulative fixation probability for Int(16). Truncation selection vs. Boltz-
mann selection with v = 1.01.

Truncation selection has a free parameter, the truncation threshold 7. It seems
obvious that the smaller the threshold 7, the larger N* has to be. But numerical
experiments have shown that there exists a threshold 7,,;, which leads to a minimal
N} .. This means that N* also increases for very low selection. The reason for this
phenomenon is genetic drift. Slow selection leads to a large number of generations which
increases the probability of gene fixation. This problem has been first investigated by
Miihlenbein and Schlierkamp-Voosen (1993b) for OneMax and genetic algorithms. A
more detailed investigation can be found in Miihlenbein and Schlierkamp-Voosen (1994).

We denote the critical population size for given 7 by N*(e, 7). Because ¢ is fixed,
we omit € and write just N*(7). For Int we have approximately computed N*(7) by a
a Markov chain analysis. The Markov model was simplified, therefore we formulate the
result as a conjecture.

Conjecture: Let 7, = 27, For FDA with fitness function Int the critical population
size N*(T) is approzimately given by
N*(1p) m N*(m) x 22 k> 1

If N*(7) has been determined, then an optimal truncation threshold 7,,; can be com-
puted. This threshold gives the minimum number of function evaluations FE.
Definition: The optimum truncation threshold 7,5 is defined by

Topt = min FE(7) = min GEN,(7) * N*(1) (39)

T T

In general 7,,; is different from 7,,;, which needs the minimal population size. The

following result follows from k > 1 from the above conjecture.

Empirical Law: For Int the optimal truncation threshold T is contained in the interval
[0.125,0.4].

Proof: Part of the result follows from the approximate formulas. For 7 = 2% we
obtain using the critical population size
n k—1 1
FE~ —xN* 27 x ———, k>1 40
P T Y R (40)

Evolutionary Computation  Volume 7, Number 1 13
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Figure 2: Minimum number of function evaluations for given 7, Int(16), OneMax(32).

The minimum is at k = 0.5(1 + v/17). O

The empirical law has been investigated in detail by numerical experiments. The
determination of the optimal population size by simulations is very difficult and error
prone. We have done extensive simulations for two distributions generated by OneM ax
and Int. In Figure 2 the results are shown. The critical population size is determined
from the condition € = 0.1, i.e. out of 1000 runs 900 find the optimum. The best
numerical fit was obtained by using 7°-7 instead of 79 for Int. For OneMaz, 78 gave
a good fit.

These intensive simulations have been made to eliminate the truncation threshold
as a free parameter. We formulate our result as a rule.

Rule of Thumb:A good truncation threshold for FDA is T ~ 0.3.

It is interesting to note that the problem of an optimal truncation threshold has
been also investigated for animal breeding. A discussion can be found in Robertson
(1960). Using a too simple model (in fact assuming an infinite number of loci n) he
obtained that 7 = 0.5 should be the optimal threshold. This result is not in agreement
with our analysis, but also not with actual selection experiments. Robertson (1960)
writes: In most selection programmes that are at all efficient, I, lies between 1 and 2.
This corresponds to 7 = 0.4 and 7 = 0.06.

Note that we have assumed that the population size remains fixed to N. It is
possible to reduce the function evaluations further by using different population sizes at
each generation. But this is only a theoretical option, because there are no techniques
known how to choose the population sizes.

We summarize our scaling results. Let a family of functions to be optimized be
defined for arbitrary n. For a given truncation threshold the function evaluations F E
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of FDA scale as the product of the number of generations to converge, GEN,, and the
critical population size, N*(1). GEN, can be bounded. It is less than n/T, normally it
will be of order O(y/n). The scaling of FDA mainly depends on N*(7). Unfortunately
the estimation of N*(7) is difficult, even for linear functions.

6 Numerical Results

This section has two purposes. First, we want to show that FDA behaves like the theory
predicts. Second, we will show that it can solve difficult optimization problems.

We will first investigate the conjecture concerning the number of generations until equi-
librium. In addition to Fi(x) = OneMax(n) the following two functions will be inves-
tigated

l

Fy(x) = Zf2($si) 8; = {Z3i—2, T3i—1, T3i }
i=1
l

Fy(x) = > fa(ws) si={si 2,3 1,23}
i=1

In Fy we set fa(xs,) to the values of the OneMaz function of order three. Fy
is thus identical to Fi. But FDA will use a factorization which consists of marginal
distributions of size 3. Thus the number of free parameters is more than twice as large.
For F3 we set f3(1,1,1) = 10 and all other values to zero.

Given our theory we expect the following results. GEN, should be equal for F'1
and F2. GEN, should be smaller for F'3 because here FDA has to test only two main
alternatives — (1,1,1) and all the rest. For FDA Fj is just like a OneMax function of
size n/3, where the probability of generating the important substring (1, 1,1) is smaller.
With random initialization the string with (1,1,1) will be generated with probability
po = 0.125. For all cases the expected number of generations Gen, can be computed
from Equation 27.

n F1 F2 F3 GENE(])O = 05)) G’ENe(n/3,p0 = 0125)
30 7.0 7.0 6.2 7.2 6.4

60 10.0 | 10.0 9.0 10.1 9.0

90 12.2 | 12.3 | 11.0 124 11.0

120 14.2 | 144 | 129 144 12.7

12064 | 188 | 188 | 21.3

150 16.0 | 16.3 | 14.1 16.0 14.3

180 17.2 | 17.8 | 15.9 17.5 15.6

Table 3: Generations until convergence, truncation threshold 0.3

Note how precisely Equation 27 predicts GEN, obtained from actual simulation
with FDA. GA is a genetic algorithm with truncation selection and uniform crossover.
It needs slightly more generations for OneMaxz than UMDA. This was already observed
in (Mihlenbein et al., 1993b). For the function F3 the genetic algorithm needs almost
twice as many generations as FDA, which has knowledge about the micro-structure of
F3.

Tt is outside the scope of this paper to test FDA on an exhaustive set of typical functions.
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We have decided to use in this paper separable ADF's, furthermore ADF's with a chain-
like structure, a tree-like structure and a grid-like structure.

Given the structure, different sub-functions have been used to generate the test
function. The first function is a deceptive function of order three. It is defined as
follows. Let u denote the number of 1s in the string. Then

09 for u=0
f ) 08 for u=1
dee3 =N 0.0 for u=2

1.0 for u=3

Next we used a deceptive function of order 5

09-0.1: for u=1i i<4
fdec5 = 0 for u=4
1 for u=5

Fpecs is a separable function of subset size 5.

1
Fpees = Z fdees(T5i—4, T5i—3, T5i—2, Tsi—1, T54) (41)
i=1

A difficult function to optimize is IsoChain. It is defined as follows:

-1

FreoChain = Z Iso1(T2i—1, T2i, Tai41) + 1502 (Tor—1, Tar, Tout1) (42)
i=1

w [0]1]2] 3
Isoy |1 |0]|0|1-1
Isos |0[0]0 l

with n = 2l + 1. The global optimum is (1,1,...,1) with value [ x (I — 1) + 1. This
optimum is triggered by Isos. It is very isolated. Six strings with leading zeroes give
the second best value of [(I — 1). These points are far away in Hamming distance from
the optimum. For this chain FDA-FAC computes the factorization

p(z) = p(21, T2, 23)p(T4, T5|73)p(T6, T7|T5) - - P(Tn—1, T | T —2)

Next we define ADFs on a tree. The root is z1. The variable z; is linked with zs;
and z5;41, the descendents. For every triple a sub-function of three variables is used,
the deceptive function of order 3 in the case of Fpecsrree and functions Iso in the case
of Frsorree- Thus

!

Frsorree = Is0a(w1,m2,33) + Y 1501 (s, T2, T2i11) (43)
i=2
l
FpecsTree = Z fdee3 (:L"i; T24, $2i+1) (44)
i=1
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We also included the function Foype, defined in (Mithlenbein et al., 1999a). This
function is defined on a chain. The definition of the function is difficult, so it will
be omitted. Two sub-functions are used alternating, making this function difficult to
optimize.

Furthermore we investigate two structures where FDA-FAC computes an approxi-
mate factorization only. A simple structure of this kind is the circle. Fzoci is obtained
from Frsochaein Dy closing the chain to a circle.

-1
Frsocir = Z Isoy(w2i—1,%2i, T2iq1) + I502 (@1, Tory1,T1) (45)

=1

For this function our factorization algorithm determines the following factorization

p(x) = p(@1, T2, 23)p(T4, T5|T3) - - - P(Tn—2, Tn1|[Tn—3)P(Tn|T1, Tn_1) (46)

This factorization is not exact. It does not fulfill the running intersection property. For
a circle an exact factorization can be theoretically derived.

p(x) = p(x1,22, 23, 2n)Pp(T4, T5|23,2n) -+ P(Tn—2, Tn—1]|Tn—3,%n) (47)

The exact and the approximate factorization are not very different. It turns out that
the numerical results for Fyz,c4r are almost identical to Frsochain- Therefore they are
omitted.

The next test function is like I'soChain, but defined on a torus of size n = m xm. The
peak function IsoT5 is used at the upper left corner of the torus. Let u denote the
number of 1’s in a string.

FIsoTorus ZISOT2 ($17m+n; T1—-14m; L1, T2, ml—i—m) (48)

n

+ E ISOTl (mup; xleft; Zi, mright; mdown)

i=2
u |0]1]2]|3]|4] 5
IsoTy |m |[0[0|0|0|m—1
IsoT, | 0 |0|0|0|0| m?

where z,, etc. is defined as the appropriate neighbor, wrapping around. This function
is even more difficult to optimize than IsoPeak. The best and second best strings have
values m® —m + 1 and m® — m. This means that their relative difference is much lower
than IsoPeak on a chain.

An exact factorization of an ADF on a grid or torus of size n = m? needs subsets
of size m. For an exact factorization the computational complexity of FDA scales
exponentially. Our FDA-FAC generated the following approximate factorization for
n = 100:

p(x) =p($1,$2,$10;9311,5591)19(5”3,3012,$92|$1,$2)P($20,1'21|$1,$11,$12)

o 'p($90|$70; Z71,Z79, 3780)
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Figure 3: Number of generations until convergence

This factorization violates the running intersection property. The factorization does not
use the conditional probabilities for one row and one column. In this case the exact
and the approximate factorization are fairly different. FDA nevertheless can find the
optimum, because the approximate factorization is still able to generate the optimum.

This test suite covers ADFs defined on simple regular graphs. We did simulations
with a fixed parameter setting. Half of the population is initialized according to our
local heuristic, the truncation threshold is set to 7 = 0.3. Only the population size N
varies. We tried to use for all simulations the optimal N*(7) in order to obtain the
lowest number of function evaluations.

The number of generations GEN, needed to convergence is plotted in Figure 3.
GEN, is the smallest for IsoChain and IsoTree. In the middle we find OneMax. The
largest number of generations is needed for the function Cuban. In general GEN, varies
only slightly from run to run. For all test functions it scales approximately like O(1/n).
This confirms the conjecture derived from the theoretical results.

In Table 4 we show the number of function evaluations F'E, defined as the product of
GEN, and critical population size.

n || OneMax | IsoChain | Decb5 | Cuban n || Dec3Tr. | IsoTr. n || IsoTo.
10 45 120 410 179 31 1170 128 36 4000
50 280 460 3010 3290 63 2700 300 49 6200

100 580 1260 7410 15100 127 5290 790 64 8400
200 1250 3440 | 15980 81 15800
300 2080 6460 | 25510 56760 || 255 12670 1530 || 100 || 21800
400 2750 9800 | 35110 121 57000
500 3850 14700 | 46280 | 115180 || 511 28050 3570 || 144 || 67000

Table 4: Number of function evaluations

For OneMaz, IsoTree, Dech and Dec3Tree we have a scaling of about O(nlnn).
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For IsoChain the scaling is about O(ny/n). There are not enough data points to
estimate the scaling of Cuban. For IsoTorus we conjecture despite some irregularities
a scaling of O(n?).

3000 . , , . ——
| | | OneMax —+—
| | | IseChain ---x---
2500 SR S S ~~IsoTree ---%--- 7
| | P Dec5 &
= -~ Dec3Tree —-m—
g 2000 oo o o @ """""" Cuban ---o- ]
] % o7 IsoTorus ----e---
[ : e : : :
o 1500 ® ‘ ‘
N % T
[%2]
)
$ 1000
500
0
0 100 200 300 400 500 600

Bitlength
Figure 4: Critical population size for 7 = 0.3

Figure 4 shows the critical population size for all functions. It was already men-
tioned that the computation of the critical population size by simulations is a very
difficult numerical task. In order to reduce the error bars, a huge number of runs have
to be made. Our criterion for the optimal population size has been that about 90% of
the runs converge to the optimum (¢ = 0.1). We have made 1000 runs for the cases
needing a small population size, 100 runs for the medium sized problems and 20 runs
only for the large problems. For all functions but IsoTorus and Cuban the critical
population size scales less than linear in n.

7 LFDA - Computing a Bayes Factorization

The researchers of graphical models have already proposed several methods which de-
termine a factorization from the data. This problem is called learning. The interested
reader is referred to the book edited by Jordan (1999). We will investigate the most
popular method developed for Bayes networks. In the context of optimization and FDA
this method has been first used by Pelikan et al. (1999).

In order to apply this method, we have to recall that each factorization can be put
into a normal form, where each variable occurs only once on the left side of a conditional
marginal distribution.

Theorem 9 (Bayes Factorization). FEach probability can be factored into
n
p(x) = p(z1) [ [ p(w:lpas) (49)

=2
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Proof: By definition of conditional probabilities we have

n

p(x) = p(ar) [[ p@ilor, - wi1) (50)

i=2
Let pa; C {z1, - ,x;—1}. If z; and {z1,--- ,2;-1} \ pa; are conditional independent,
we can simplify p(z;|z1,- -+, z;-1) = p(zi|pa;). O

PA; are called the parents of variable X;. Thus each Bayes factorization defines a
directed graph. In the context of graphical models the graph is called a Bayes network
(Jordan (1999)).

We note that any FDA factorization fulfilling the running intersection property can
be put into a normal form. We just take a simple example. Let x;, = {z;, x, 2} with
i < k <l. Then

p(xbi xCi) = p(xilmcl' )p(mk|wi7 Te; )p(xl|xi’ L, xci)

Because of the running intersection property all variables of ¢; have an index less than
i. Therefore we obtain a valid normalized factorization.
We can now formulate the Bayes network learning problem. Given a population of
selected points M(t), what is a good Bayes factorization fitting the data? The most
difficult part of the problem is to define a quality measure. The following discussion is
a short summary of (Bouckaert, 1994). The interested reader is also referred to the two
papers by Heckerman and Friedman et al. in (Jordan, 1999).

For Bayesian networks two quality measures are most frequently used - the BDe
score and the Minimal Description Length (MDL) score. Let B denote a Bayes network,
D the given data set and M = |D| its size. Then MDL is given by

MDL(B,D) = —1d(P(B)) + M - H(B, D) + 1PA -1d(M) (51)
with 1d(z) := log,(z). P(B) denotes the prior probability of network B, PA = ", 2/Pa:|

gives the total number of probabilities to compute. H(B, D) is the conditional entropy
of the network structure B and data D. It is given by

n
H(B.D) = — m(zi, pai) 1d m(zi, pai) 9
(.0) = =33 ¥ = i (52)
where m(z;,pa;) denotes the number of occurrences of z; given configuration pa;.
m(pa;) = Y, m(zi,pa;). If pa; = 0, then m(x;, ) is set to the number of occurrences
of z; in D.

The term %PA -1d(M) models the computational cost of estimating the probabil-
ities. If no prior information is available, P(B) is identical for all possible networks.
In this case the MDL measure assigns high quality to networks that fit the data with
as few arcs as possible. This principle is called Occam’s razor. It has been intensively
studied by Zhang and Miihlenbein (1997) for neural networks. In order to give more
weight to sparse Bayes networks, we use a weight factor a. Therefore our score is

BIC(B,D,a) = —M - H(B,D) — aPA -1d(M) (53)
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This measure has been also proposed by Schwarz (1978) as Bayesian Information Cri-
terion. To compute a network B* which maximizes BIC requires a search through the
space of all Bayes networks. Such a search is more expensive than to search for the
optima of the function. Therefore the following greedy algorithm has been used. k45
is the maximum number of incoming edges allowed.

BN(a, kmax)
o STEP 0: Start with an arc-less network.

e STEP 1: Add the arc (z;,z;) which gives the maximum increase of BIC(a) if
|PA;j| < kmae and adding the arc does not introduce a cycle.

e STEP 2: Stop if no arc is found.

Checking whether an arc would introduce a cycle can be easily done by maintaining for
each node a list of parents an ancestors, i.e. parents of parents etc. (z; — z;) introduces
a cycle if z; is ancestor of ;.

The BOA algorithm of Pelikan et al. (1999) uses the BDe score. This measure has
the following drawback (Bouckaert, 1994). It is more sensitive to coincidental correla-
tions implied by the data than the MDL measure. As a consequence, the BDe measure
will prefer network structures with more arcs over simpler networks. The BIC measure
with @ = 1 has also been proposed by Harik (1999). But Harik allows only factorizations
with marginal distributions.

Given the BIC score we have several options to extend FDA to LFDA - the FDA
which learns a factorization. Due to limitations of space we can only show results
of an algorithm which computes a Bayes network at each generation using algorithm
BN(0.5, kimaz). FDA and LEDA should behave fairly similar, if LFDA computes factor-
izations which are in probability terms very similar to the FDA factorization. FDA uses
the same factorization for all generations, whereas LFDA computes a new factorization
at each step which depends on the given data M.

All numerical experiments show that LFDA and FDA behave very similar in number
of generations to converge to the optima. The major difference occurs in the critical
population size. One expects that LFDA needs a larger population size, because it has
to estimate the network structure. We first compare the critical population sizes for
three functions which are simple to optimize. The first function is OneM az, the other
two functions are defined on a circle. We use two sub-functions

—_
—

|00]01]10]1
11503

1|50 4

Note that f,ris is a linear function. Both functions are used to generate the functions
Fp,is and Fp,;s, on a circle.

fprisn
fprisl

n—1

Fpris = Z foris(Ti, Ti1) + fpris(Tn, T1) (54)

i=1
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Figure 5: Critical population size for FDA and LFDA

For a circle FDA-FAC computes the approximate factorization

p(z) = p(x1,22)p(22|71) - - . P(Tr 1 |Tr—2)P(T|T 1) (55)

LFDA computed factorizations with slightly more edges. We expect the following re-
sults. The critical population size of FDA for OneMax is smaller than the critical
population size for Fpr;s. There will be no difference between Fpy;s; and Fprisn, be-
cause FDA will use the same factorization. The critical population size of LFDA will
be higher than of FDA. There will be almost no difference between the three functions,
because LFDA will for all three compute a very similar Bayes network.

The actual results are shown in Figure 5. They confirm the expectations. For Fp,;s
we observe the relation N pp4 = 2Nppy-

LFDA is computationally much more expansive than FDA. First, the heuristic
BN (a, kmaz) is only needed for LEFDA. This computation is cubic in n. Second, LFDA
needs a larger critical population size N*.

Table 5 gives results for ADFs defined on a chain with 2,4, and 6 neighbors. The
size of the problem is n = 20.

|| Chain2 | ms || Chaind | ms || Chain6 | ms ||
FDA H 130 650 ‘ 300 H 1800 ‘ 1200 H

LFDA 240 ‘ 570 H 2460 | 9300 14000 | 60000

Table 5: Critical population sizes and computation time (ms) for FDA and LFDA

The computational time ms can be reduced by optimizing the LFDA program. But
the critical population size N* cannot be reduced for LEFDA. Unfortunately the more pa-
rameter the network has, the larger the factor N ppa/Njpa gets. The factor increases
from 2 for C'hain2 to almost 8 for Chain6. This empirical result confirms the conjec-
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ture, that learning of structures will be computationally very expensive (Miihlenbein et
al., 1999a).

8 Conclusion

The Factorized Distribution Algorithm FDA converges to the optima, of the fitness func-
tion if Boltzmann selection is used. But Boltzmann selection has numerical drawbacks.
For computational efficiency a good annealing schedule has to be determined for each
problem. This is very difficult. A much simpler selection method is truncation selection
as used by breeders. We showed for a representative fitness distribution that FDA with
truncation selection behaves identical to FDA with a certain annealing schedule.

FDA is a true evolutionary algorithm. The population at generation ¢ is used to
generate the population at generation ¢t + 1. The population at generation ¢ — 1 is not
used for generation ¢t + 1. There is no memory involved. The ADF decomposition is
only used to compute a factorization of the distribution. The factorization is exact or
approximate, depending on the ADF. FDA is depending on one parameter only. This
is the population size N. The more difficult the optimization of the function is, the
larger NV has to be. We will try to develop methods where the population size can be
adjusted during a run.

FDA uses the ADF structure to compute a factorization of the distribution. We
have extended FDA to LFDA, which computes a Bayes factorization from the data
without knowledge of the ADF structure. LFDA gave surprisingly good results, even
for fairly complex structures. But for complex ADF structures LFDA is much more

computationally expensive than FDA. There is lots of research to be done in improving
LFDA.
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