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Abstract- FDA - the Factorized Distribution Algorithm -
is an evolutionary algorithm that combines mutation and
recombination by using a distribution. First the distri-
bution is estimated from a set of selected points. It is
then used to generate new points for the next genera-
tion. In general a distribution defined for n binary vari-
ables has 2™ parameters. Therefore it is too expensive to
compute. For additively decomposed discrete functions
(ADFs) there exists an algorithm that factors the distribu-
tion into conditional and marginal distributions, each of
which can be computed in polynomial time. The scaling
of FDA is investigated theoretically and numerically. The
scaling depends on the ADF structure and the specific as-
signment of function values. Difficult functions on a chain
or a tree structure are optimized in about O(n+/n) func-
tion evaluations. More standard genetic algorithms are
not able to optimize these functions. FDA is not restricted
to exact factorizations. It also works for approximate fac-
torizations.

Keywords — evolutionary algorithms, graphical models,
factorization of distributions, Boltzmann selection

1 Introduction

It is well known that evolutionary algorithms have difficulties
in optimizing functions with nonlinear interacting variables.
For continuous variables Rosenbrock’s function is a classical
example. In order to optimize this function search points have
to be generated in a small valley running nonorthogonal to all
axes. All variables have to be changed together in a certain
manner in order to obtain an improvement. In this paper we
investigate the problem of nonlinear interacting variables for
additively decomposed functions (ADFs) defined on discrete
domains.

A number of new evolutionary algorithms have been pro-
posed which optimize ADFs better than genetic algorithms.
These algorithms try to detect and exploit the structure of an
ADF. The methods used can be classified as follows:

e Adaptive recombination
e Explicit detection of relations [7]

e Dependency trees [3]

e Bivariate marginal distributions [17]

e Estimation of distributions [16],[4]

Adaptive recombination uses a number of heuristics to
modify two-parent recombination. Kargupta’s GEMGA [8]
tries to detect dependency relations by manipulating individ-
ual substrings.

The last three methods are based on probability theory and
statistics. They use all the statistical information contained
in the population of selected points to detect dependencies.
In this paper an algorithm called the Factorized Distribution
Algorithm (FDA) will be investigated. FDA uses an exact
factorization of the distribution of selected points.

FDA is based on a solid mathematical foundation. Many
results can be derived by mathematical analysis. Therefore
this paper is a mixture between theoretical analysis and nu-
merical experiments. The experiments are mainly used to
confirm the theoretical analysis.

The outline of the paper is as follows. In Section 2 the
main factorization theorem is recalled. FDA is defined in 3.
We make a theoretical analysis of FDA for large (infinite)
populations in Section 6. The extension of FDA to continuous
variables is briefly discussed.

2 A Factorization Theorem

In this section we recall the main results proven in [14]. First
we define precisely an ADF.

Definition: An additively decomposed function (ADF) is de-
fined by

f@)=> filuz)  S={s1,...,s1} s CX (1)
s; €S
where
X = {&1,...,2,} B:={0,1} X:=BX
X, C XwithsCX
I,z := the projection of x € X onto the subspace X

Next we define a distribution which will be used for generat-
ing promising points. A good candidate is a generalization of



the Gibbs or Boltzmann distribution.

Definition: The Gibbs or Boltzmann distribution of a func-
tion f is defined for w > 1 by

_ Exp,f(x)
P) = S B f )

where for notational convenience

Exp,f(z) = u/®  F, = Exp,f(y)
Yy

)

Remark: The Boltzmann distribution is usually defined
as e—%/z. The term g(z) is called the energy. Setting
g(z) = 1/f(z) and u = e~ T gives Equation 2. Z = F, is
called the partition function.

The Boltzmann distribution has the following feature: the
larger the function value f(z) becomes, the larger p(z) be-
comes (for u > 1). It seems a good optimization strategy to
distribute the search points in such a manner. Unfortunately
the computation of the Boltzmann distribution needs an ex-
ponential effort (in the size of the problem). There are at least
two approaches to reduce the computation: to approximate
the Boltzmann distribution or to look for ADFs where the
distribution can be computed in polynomial time. The first
approach is used by Simulated Annealing [1]. FDA is based
on the second approach. The distribution is factored into a
product of marginal and conditional probabilities. They are
defined as usual

p(le,z) = D () (3)

yeX, ., y=1.,

p(Mp, z, I, x)
H T — i S R A 4
= ) “
The main factorization theorem uses the following sequence
of sets as input.

p(Hbiw

Definition: Given a set of sets S = {s1,...,s;}, we define
fori =1,2,...,1setsd;b; and ¢;
dz' = Uj’:l Sj (5)
by =s;\di—1 (6)
¢ =8 Ndi—1 (7
We set dg = 0.

In the theory of decomposable graphs, d; are called histories,
b; residuals and ¢; separators [10].

Theorem 1 (Factorization Theorem) Let p(z) be a Boltz-
mann distribution on X with

_ BExp, f(2)

p(z) F,

with 4 > 1 arbitrarily. 8)

If
bi£0 VYi=1,...,1; d=X, 9)
Vi >23dj < suchthatc; C s; (10)
then
1
p(z) = Hp(Hbia:-lHCim) (11)

i=1

The proof can be found in [14]. There also the design
rational of the Factorized Distribution Algorithm FDA and
its connection to genetic algorithms is discussed. Equation
10 is called the running intersection property.

The running intersection property is fulfilled if the inter-
action graph derived from the sets s; is similar to a tree [10].

Therefore the class of ADFs with a numerical efficient ex-
act factorization is limited, as the following 2-D Ising spin
systems shows.

Frsing(y) = Z Z Jijriz; xi € {-1,1}  (12)

i JEN(I)

The sum is taken over the four spatial neighbors N(z),
but each J;; is used only once. The objective function is
purely quadratic. All factorizations fulfilling the running
intersection property on 2-D grids need large sets. We state
without proof.

Proposition 2: All exact factorizations of ADFs defined on
2-D grids require the computation of conditional marginal
distributions of size O(4/n) where n is the size of the grid.

3 The Factorized Distribution Algorithm

We assume that an ADF and a factorization of the probability
distribution is given. The factorization can also be used at the
initialization. For faster convergence a proportion of 7 x N in-
dividuals can be generated with a local approximation of the
conditional marginal distributions. The local approximation
is explained in [14].

FDA,

e STEP 0: Set¢ « 0. Generate (1 —7r) * N > 0
points randomly and r x N points according to the local
approximation.

e STEP 1: Selection of promising points.

e STEP 2: Compute the conditional probabilities
pS(Hbix HCim7t)'

e STEP 3: Generate a new population according to
p(;L',t + 1) = Hi’:l ps(Hbix HCimat)'

o STEP 4: If the termination criteria are met, FINISH.




e STEP 5: Add the best point of the previous generation
to the generated points (elitist).

e STEPG6: Sett < t+ 1. Goto STEP 2.

FDA can be used with an exact or an approximate factor-
ization. It uses finite samples of points. Convergence of FDA
to the optimum will depend on the size of the samples. FDA
can be run with any popular selection method. We usually ap-
ply truncation selection. A comparison between Boltzmann
selection and truncation selection is made in Section 6.

3.1 Analysis of Factorization

The computational complexity of FDA depends on the fac-
torization and the population size N. The number of function
evaluations to obtain a solution is given by

FE=GEN, N (13)

GEN, denotes the number of generations till convergence.
Convergence means that p(z, ¢ + 1) = p(z, t). The computa-
tional complexity of computing N new search points is given

by

compl(Npoints) =1+« N (14)

|s;| denotes the number of elements in set s;. The computa-
tional complexity of computing the probability is given by

1
compl(p) =~ (Z 251y « M (15)
=1

where M denotes the number of selected points. We therefore
obtain that the amount of computation of FDA depends on N
and the size of the defining sets s;. In order to exactly com-
pute the probabilities an infinite population is needed. But a
numerical efficient FDA should use a minimal population size
N* still giving good numerical results. The computation of
N* is a difficult problem for any search method using a pop-
ulation of points. This problem will be discussed in Section
7.

FDA furthermore depends on the defining sets s;. We
have implemented a simple factorization algorithm which
assumes that the defining sets are sorted into a sequence
(s1,82,--.,8,). Then the sets b; and ¢; such that b; # 0 are
computed according to the factorization theorem. Changing
the sequence will change the factorization. For the root set b,
the sub function which is maximally nonlinear (measured as
deviance from a linear square predictor) is chosen.

Computing a factorization with minimal complexity for
an arbitrary ADF is a very difficult task. We conjecture that
this problem is in N P. This research needs deep results from
graph theory. The problem of factorization of a probability
distribution is also dealt with in the theory of graphical mod-
els [6]. Any progress in the theory of graphical models can
also be used for FDA.

4 Conver gence of FDA

Miihlenbein et al. [14] proved convergence of FDA if points
are selected according to a Boltzmann distribution with a
given v > 1. In this case the distribution p® of the selected
points is given by

Exp, /(=)
> . p(x,t)Exp, f()

Boltzmann selection has been investigated for genetic al-
gorithms by de la Maza & Tidor [5]. One can easily show that
if p(z,t) is a Boltzmann distribution, then p®(z,t) is also a
Boltzmann distribution. If new points are generated accord-
ing to

ps($at) = p(x,t) (16)

p(z,t+ 1) = p°(x,t),

then p(z,t + 1) obviously is a Boltzmann distribution. The
following two theorems have been proven in [14].

Theorem 2 If the initial points are distributed according to

p(z,0) = B<p+j(m with u > 1, then for FDA the distribution
at generation ¢ Is given by

Exp,, f (2)
pla,t) = =——2——— 17
SR SH=TW0) an
with w = v - vt
From this theorem convergence easily follows.

Theorem 3 Let X,p: = {Z1opt, T2opt, --} be the set of op-
tima. Then under the assumptions of Theorem 2

1
— %€ Xopt
li 1) ={ [Xopl op
tlglop(x’) { 0 else

(18)

Therefore FDA with Boltzmann selection has a solid the-
oretical foundation. Unfortunately Boltzmann selection has
numerical drawbacks. This will be explained in the next Sec-
tion 6. We mainly use FDA with truncation selection. It
works as follows. Given is a truncation threshold 7. The best
7 % N individuals are selected. We estimate the conditional
probabilities of the selected points p® (ITy, x|, x, t) from the
empirical distribution. Then the factorization theorem is used
to generate new search points according to

l
p(.’L‘,t + 1) = Hps(nbi'T'HCiw:t)

=1
5 Continuous Variables

Interacting variables also pose a problem for all continuous
optimization methods. For simplicity we assume that z; is
restricted to an interval [a;, b;]. Then the domain considered
for optimization is D := [a,b]". The theory presented
can also be applied to continuous variables with minor



modifications only.

Definition: The continuous Gibbs or Boltzmann distribution
of a function f is defined for v > 1 by

_ Exp,f(z)
plr) = Jp Exp, f(y)dy

Zy = [, Exp,f(y)dy is called the partition function.
This shows the minor modification necessary. Sums have to
be changed into integrals. Similarly we define Boltzmann se-
lection for FDA at generation t for basisv > 1

(19)

Exp, f(z)
Jp 0y, t)Exp, f(y)dy

We easily obtain a theorem similar to the one for discrete
variables.

ps(m,t) = p(a},t) (20)

Theorem 4 If the initial points are distributed according to

p(z,0) = % with « > 1, then for FDA the distribution
at generation ¢ is given by

Exp,, f(z)

B, f(W)dy =

p(,1)

with w = u - vt.

Proof: We just prove one step, from the initial generation
t = 0 to the first generation ¢t = 1. We have

Ex T Ex T
sty = ERSE_ES)
uw [, =B Exp, f(z)de
_ Empu*vf(x)
fD Expu*vf(m)dx
Repeated application of this equation gives the assertion 21.

This proof is almost identical to the proof for discrete
variables. Thus the main factorization theorem holds also for
continuous variables.

Theorem 5 (Factorization Theorem) Let p(z) be a contin-
uous Boltzmann distribution on D with

E . N
p(x) = %ﬂx) with u > 1 arbitrarily. (22)
If
bi#0 Vi=1,...,I; d =X, (23)
Vi >23j < i suchthate; Cs; (24)
then

10,,z) (25)

The discrete conditional distributions p® (II,, z|II., ) can
be easily computed from empirical data. But for continu-
ous variables the computation of the marginal probabilities
requires integration over subspaces of D. This computation
is numerically too expansive.

Therefore additional assumptions concerning the distribu-
tions have to be made. We discuss the problem with an ex-
ample. Let the fitness function be defined by

f(@) = —5 (@ — w7 B — p) (26)

where B is a symmetric, positive definite matrix. The domain
D has to be sufficiently large (see below). Using the Boltz-
mann distribution, we can use the main factorization theorem
to obtain the subsets s; and a corresponding factorization.

For this example the Boltzmann distribution is just a mul-
tivariate normal distribution scaled by the temperature T'. The
parameters of this distribution can be computed as usual from
the mean p and the variance/covariance matrix A. Then
A = B~1[9]. If the running intersection property is ful-
filled, then the distribution factorizes. Because it is a multi-
variate normal distribution, samples can be fitted by estimat-
ing means, variances and covariances (setting covariances to
zero according to the original interaction graph). The domain
D has to be large enough so that no significant portion of the
multivariate normal distribution is cut off a priori.

When the temperature increases, the matrix of variances
and covariances is scaled so that the distribution is more and
more concentrated around the peak at u.

If, for example, B is tridiagonal (b;; = 0 if |i — j| > 1),
then sois A, and f has the following structure:

f(=)

1 71
—5(.’51 — 11)?b11 + ; [—§($z — wi)’bi;
+(zim1 — pi—1)(zi — ui)bi—l,i]

= flz)+ ) filwioy,z:)

=2

The distribution factorizes as a chain:

p(z) = p(z1)p(@2|z1)p(23|22) - - - P(TN|T1—1)-

Marginal probabilities of multivariate normal distributions
are also multivariate normal [9]. The factorization enables us
to estimate the parameters of these local multivariate normal
distributions locally. Take as example

p(x1,22)

Poalo) = S

Then p(x1,z2) is a bivariate normal distribution and p(x;)
is a normal distribution. The whole distribution can thus be
described by 3n — 1 parameters (n means, n variances and
n — 1 covariances), that is, the same number of parameters as
in the function definition.



Note that this method resembles evolution strategies and
evolutionary programming [2]. All three methods generate
new search points according to a multivariate normal distri-
bution. FDA has a global view. It computes the normal dis-
tribution which gives the best fit to all selected points. The
other two strategies plaace the mean of the normal distribu-
tion at the best point computed so far.

If the selected points are approximately distributed like a
normal distribution, then FDA will converge fast to the op-
timum. But if the empirical distribution is multimodal, a fit
by a normal distribution would be bad. Therefore FDA has
to use more general methods for fitting continuous distribu-
tions in order to optimize arbitrary ADFs. This topic is under
investigation.

6 Analysisof FDA for Large Populations

For Boltzmann selection we have analytically derived ex-
act difference equations for the marginal distributions. FDA
mainly depends on the factorization, not on the function val-
ues. Numerical experiments have confirmed that the be-
haviour of FDA is very similar for functions having a similar
factorization.

Typical fitness distributions are generated by the two func-
tions

OneMazx(n

Z T; (27)
Int(n Z 211y (28)

OneMaz has (n + 1) different different fitness values which
are binomial or multinomial distributed. Int has 2™ different
fitness values. For ADFs the multinomial distribution is “typ-
ical”, i.e it occurs fairly often. The distribution generated by
Int is more special. Both functions are linear and therefore
the following factorization is used

n

[ (1) (29)

i=1

p(z,t+1)=

We first analyze OneM azx.

Theorem 6 Select points according to a Boltzmann selection
with basis v > 1. Then the distribution generated by FDA for
OneM ax is given by

e

A+ (30)

p(z,t) =

The number of generations needed to generate the optimum
with probability 1 — € is given by

GEN, ~

(1)
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Figure 1: Probability p(t) for OneMaz(100) with Trunca-
tion selection and Boltzmann selection

For truncation selection an approximate analysis was
already done in [13],[11]. For simplicity we assume that in
the initial population all univariate marginal distributions are
equal (p;(z; = 1,t = 0) = po). Then p;(z; = 1,t) := p(t)
for all t.

Theorem 7 For truncation selection 7 with selection inten-
sity I- the marginal probability p(t) obeys for OneMazx

plt+1) = p(0) + /1 pO). (D)

This equation has the approximate solution (po := p(0

p(t) =0.5 (1 + sin (ITt + arcsin(2pg — 1) )) (33)

where

t< (5 — aresin(2pg — 1)) ?

The number of generations till convergence is given by

= (g — arcsin(2py — 1)) ? (34)

T

GEN,

The relation between 7 and . depends on the fitness dis-
tribution [11]. Assuming that the fitness distribution is nor-
mal, I. can be computed from the error integral. For normal
distribution we have
T=27"F

I, =~ ak for k>2

Asymptotically truncation selection needs more genera-
tions to convergence than Boltzmann selection. GEN,, is of
order O(In(n)) for Boltzmann selection and of order O(+/n)
for truncation selection. But if the basis v is small (e.g.
v = 1.2), and € = 0.01 then even for n = 1000 truncation
selection converges faster than Boltzmann selection.

The different behaviour of Boltzmann selection and trun-
cation selection is shown in Figure 1. The two equations



30 and 33 are plotted for reasonable values of v and I.
For v = 1.2 Boltzmann selection selects slightly more se-
vere than truncation selection with I = 0.8 at the begin-
ning. Boltzmann selection gets weak when the population ap-
proaches the optimum. The same behaviour can be observed
for v = 1.5. In fact, all selection methods using proportion-
ate or exponential proportionate selection have this problem.
If the fitness values in the population differ only slightly, se-
lection gets weak. Truncation selection does not have this
problem. It selects much stronger than Boltzmann selection
when approaching the optimum. Therefore truncation selec-
tion with I = 1.6 converges faster than Boltzmann selection
forv = 1.5.

The convergence of Boltzmann selection can be speeded
up if an annealing schedule is used. This means that the basis
v has to be changed during the run. The optimal schedule
depends on the given fitness function. We will investigate this
problem for the fitness distribution generated by OneM az.
We will show that FDA with truncation selection generates
a Boltzmann distribution. Therefore for each truncation
threshold 7 there exists a corresponding annealing schedule
for Boltzmann selection generating the same distributions.

Theorem 8 Let the distribution be generated by p(z) =
[T, p(z;). Let p(z; = 1) := p;. Then there exist
Tl, . ;Tn with

pi . (35)
so thatfor f(z) = >, =
(36)

Z is the partition function defined by - p(y) = 1.

Proof: Because exp (In(p;/(1 —p;))) = pi/(1 — p;) one
obtains

n Pn D1p2
Z =1+ +...+ + +
1-pm l=pn  (1=p1){1—p2)
Pn—1Pn + Hz Di
(1 =pn-1)(1 —pn) [L;Q1 - pi)
This can be simplified to
1
7= =
II=, (1 —pi)
Now the conjecture easily follows. L]
Corollary If p; = ... = p, := pthen p(z) is a Boltzmann
distribution with
f(2)
e T
p(z) = @7

where

1 p

Forp =1/2wehave T = oo and forp = 1 we get T =

0. Using Equation 32 we can now compute the annealing
schedule. It is given by

1 p(t)

M T ()

(39)

In Table 1 the schedule is shown for n € {16,32,64,256}.
1/T(¢) first grows linearly in ¢, it increases nonlinear when
approaching the optimum.

t|n=16 | n=32 | n=64 | n =256
1| 0.4055 | 0.2848 | 0.2006 0.1000
2 | 0.8377 | 0.5785 | 0.4044 0.2005
3 | 1.3238 | 0.8884 | 0.6135 0.3016
4 | 19125 | 1.2244 | 0.8305 0.4036
5| 27213 | 1.6005 | 1.0587 0.5068
6 | 4.2842 | 2.0401 | 1.3020 0.6114
7 oo 2.5878 | 1.5658 0.7179
8 3.3510 | 1.8574 0.8265
9 47853 | 2.1880 0.9376
10 o0 2.5756 1.0517
11 3.0530 1.1693
12 3.6911 1.2907
13 4.7096 1.4168
14 o) 1.5482
28 5.6610
29 7.5458
30 (e

Table 1: Value of 1/T'(t) for OneMax and 7 = 0.5

Let us now turn to the analysis of the function Int. We
first consider truncation selection with 7 = 0.5 and a large
population size. After one generation of selection the n-th bit
will be fixed. The other bits will not be affected by selec-
tion. After the next generation bit (n — 1) will be fixed etc.
Convergence to the optimum is achieved after n generations.

For truncation selection with 7 = 0.25 two bits will be
fixed in every generation. Convergence will be reached after
n/2 generations. Therefore we obtain for Int.

Theorem 9 For truncation selection with 7 = 27%;k > 1
the number of generations to converge to the optimum for I'nt
is given by

GEN, =% (40)
k
Setting the selection intensity I, = k for 7 = 27%F we
obtain the same result as for OneMaxz: GENg scales
inversely proportionate to I... But the scaling is different for
n. GEN, scales proportionate to n. This is the worst case,
as the following theorem shows:



Theorem 10 Let the optimum be unique. If the population
size is very large we have for truncation selection with 7 =
2—k
n

GEN. < (41)
Proof: In an infinite population the optimum is contained
with probability 1/2™ if it is unique. After one step of se-
lection the probability will be increased at least to 2% /2™, In
about n/k steps the probability of the optimum has increased
1. ]

The theoretical analysis of Int for Boltzmann selection is
more difficult and will be omitted.
We summarize the results for truncation selection.

e For 7, = 27F k > 2 we have approximately
ITk /ITk+1 = k/(k + 1)

e GEN, isbounded by n/I, forT <1/2

e For “typical” fitness distributions GE N, is proportion-
ateto v/n/I. forr < 1/2.

This means that FDA will converge in at most n steps for
7 < 0.5. The difficult part remaining is the computation of
an “optimal” 7. For this investigation we have to compute for
each 7 the critical population size N*(7).

7 Estimation of the Optimal Selection I ntensity

A big problem of all population based search methods is their
dependency on the population size. Here FDA with trunca-
tion selection has a nice numerical property. If the population
size is larger than N* then

GEN,(N)=GEN.(N=00) N>N* (42)

This behaviour has been confirmed by many numerical exper-
iments. It means that the number of generations to converge
remains constant for N > N*. N* is called the critical pop-
ulation size, defined as the minimal population size needed
to find the optimum with high probability, e.g. 99%. The
determination of the critical population size N* is difficult.

N* obviously depends on the truncation threshold. The
smaller the threshold 7, the larger N*(7). This has been
first investigated by Mihlenbein and Schlierkamp-Voosen
[12] for OneMaz and genetic algorithms. A more detailed
investigation can be found in [13]. If N*(7) has been
determined, then an optimal truncation threshold 7,,; can
be computed. This threshold gives the minimum number of
function evaluations F'E.

Definition: The optimum truncation threshold 7,,; is defined
by

Topt = min FE(T) = min GEN, (1) * N*(1) (43)

The following theorem has been derived from a Markov
chain analysis. The Markov model is simplified, therefore
we just conjecture.

Conjecture: Let 7, = 27%. For FDA with fitness function
Int the critical population size N*(7) is approximately given

by

N*(m) ~ N*(r) 2T k>1
The following result follows from £ > 1 from the above
conjecture.

Empirical Law: For Int the optimal truncation threshold 7
is contained in the interval [0.125,0.4].

Proof: Part of the result follows from the approximate for-
mulas. For 7 = 2—% we obtain using the critical population
size

FEZ%*N*(Tl)*QkQ;lO( k>1 (44)

1
VTlog(1/7)’

The minimum lies between 0.125 and 0.4. n

The empirical law has been investigated in detail by nu-
merical experiments. The determination of the optimal popu-
lation size by simulations is very difficult and error prone. We
have done extensive simulations for two distributions gener-
ated by OneMax and Int. The optimal population size is
determined from the condition that from 1000 runs 900 find
the optimum. The best numerical fit was obtained by using
797 instead of 795 for Int. For OneMax, 7°-% gave a good
fit.

These intensive simulations have been made to eliminate
the truncation threshold as a free parameter. We formulate
this important result as a rule.

Rule of Thumb:The optimal truncation threshold for FDA
is contained in 0.125 < 7 < 0.4. 7 = 0.3 is a good choice.

This result has been obtained by a mixture of theoretical
results and numerical experiments. The same problem has
been investigated for animal breeding. A discussion can be
found in [15]. The empirical found result is the same. In most
selection programmes that are at all efficient, 7. lies between
1 and 2. This correspondsto 7 = 0.4 and 7 = 0.06.

8 The Factorization Problem

The FDA theory assumes an that an exact factorization of the
probability distribution is given. Then convergence of FDA
can be shown if the size of the population is large enough.
But an exact factorization is not necessary for finding the op-
timum z,,;. If an approximate factorization p(z, t) used for
generating search points fulfils p(zspt) > p(xop:, then FDA



will also converge to the optimum. This assertion is diffi-
cult to prove for a given distribution. Nevertheless it explains
why FDA will also converge to the optimum for many ap-
proximate factorizations.

Another problem is that we assume that an ADF is explic-
itly given. For many physical problems this is the case. But
there are of course problems where the structure of the ADF
is unknown. In this case FDA has to estimate the probability
model and its factorization. This techniques is called learning
of the probability model in the theory of graphical models. It
is an area of active research. FDA can easily be combined
with a learning model. The requirements are that learning is
not too expansive and that the learned probability model has
a structure, which is very different from the ADF structure.

9 Conclusions

FDA combines evolutionary algorithms and simulated an-
nealing. The theory is valid for discrete and continuous vari-
ables. By putting the emphasis on the estimation of distribu-
tions FDA also reconciles genetic algorithms with evolution
strategies and evolutionary programming. The mathematical
proof of convergence assumes that FDA is used with an exact
factorization. But for many applications approximate factor-
izations are sufficient.

FDA can be combined with methods which “learn” the
factorization. Therefore FDA can profit from any progress in
this area.
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