Schemata, Distributions and Graphical Models in
Evolutionary Optimization

Published in: Journal of Heuristics, 5, pp. 215-247, 1999

Heinz Miihlenbein, Thilo Mahnig and Alberto Ochoa Rodriguez’
Real World Computing Partnership Theoretical Foundation GMD Laboratory
GMD - Forschungszentrum Informationstechnik

53754 St. Augustin.

Abstract

In this paper the optimization of additively decomposed discrete functions is inves-
tigated. For these functions genetic algorithms have exhibited a poor performance.
First the schema theory of genetic algorithms is reformulated in probability theory
terms. A schema defines the structure of a marginal distribution. Then the
conceptual algorithm BEDA is introduced. BEDA uses a Boltzmann distribution
to generate search points. From BEDA a new algorithm, FDA, is derived. FDA
uses a factorization of the distribution. The factorization captures the structure of
the given function. The factorization problem is closely connected to the theory
of conditional independence graphs. For the test functions considered, the perfor-
mance of FDA - in number of generations till convergence - is similar to that of
a genetic algorithm for the One M ax function. This result is theoretically explained.

Keywords
graphical models, conditional independence graphs, additively decomposed functions, es-
timation of distributions, population based search, genetic algorithm

1. Introduction

A genetic algorithm is a population based search method. A set of points is gener-
ated, promising points are selected, and new points are generated using the genetic
operators recombination/crossover and mutation. The simple genetic algorithm
(Goldberg 1989) selects promising points according to proportionate selection

f(z)
ps(ll,‘,t) :p(xat)—— (1)
f)
Here © = (1, %2,--. ,%,) denotes a vector of discrete variables (genotype), p(x,t)

is the distribution of z at generation ¢ and f(t) = 3 p(x,t)f(x) is the average
fitness of the population. For simplicity we assume binary variables z; € {0,1}. In
principle one would like to generate new points according to

pz,t+1) ~ p*(a,1). (2)

In general a discrete probability is defined by 2™ parameters. Therefore a straight-
forward implementation is computationally too expensive. Nevertheless, an inves-
tigation of the following question is promising: Can Equation 2 be approximated



with substantially less than exponential computational effort? Instead of extending
the genetic algorithm, we take a new approach based on probability theory. We try
to approximate the equation by explicit aggregation.

A possible structure for aggregation is a schema (Holland 1992). We just give an
example for a schema. Extending the usual notation,

H(xi, ) = (Fy 0o %, Tgy Ky ooy 5k Ty ¥y e ) 3)

defines a schema where the values of the variables x; and xj are held fixed, the
other variables are free. If we sum Equation 1 over all x which are members of
schema H(x;, 1) we obtain the probability of H (z;,x) after selection

PP(H (i, o), t) = Y %_ 0

zeH

In probability terms p®(H (z;,x),t) is a marginal distribution which we abbre-
viate by p®(z;,zk,t). We can now state the problem of aggregation in terms of
probability theory: Does a set of marginal distributions ezist the combination of
which gives a good approximation to Equation 2 and which can be computed in
polynomial time.

The simplest approximation uses first order schemata. These schemata define
univariate marginal distributions. This approximation is used by the Univariate
Marginal Distribution Algorithm UMDA (Miihlenbein 1998). New points are gen-
erated according to

n
pla,t+1) = [[(z0.t) )
i=1

p®(x;,t) denotes the probability (after selection) of a first order schema defined
at loci 4. If the distribution p®(z,t) in Equation 1 is complex, first order schemata
give a bad approximation. In order to get a better approximation for complex dis-
tributions higher order schemata have to be used. But which higher order schemata
should be used? In this paper this problem is solved for a class of functions called
additively decomposed functions (ADF).

The outline of the paper is as follows. In Section 2 we introduce ADFs. Then we
define evolutionary algorithms based on probability distributions. For the theoret-
ical analysis the Boltzmann distribution is used. For this distribution convergence
of a conceptual algorithm is shown. The Boltzmann distribution can be efficiently
computed if it can be factorized. In Section 4 our main factorization theorem is
proven. Then a new algorithm, the Factorized Distribution Algorithm FDA is de-
scribed. The relation between our factorization method and the factorization used
for graphical models is shown next.

FDA is extended to constraint optimization problems in Section 7. The problem
of decomposing an unknown function defined by a function value table into an ADF
is briefly investigated in Section 8. Then the schema theorem of genetic algorithms
is discussed in the context of FDA. In Section 10 approximate convergence results
for FDA are derived. These are used to discuss the numerical results of a suite of
test functions.



2. Additively Decomposed Functions

Numerically the deficiencies of genetic algorithms using Mendelian string based
recombination methods have been first demonstrated with a simple class of fitness
functions, called deceptive functions of order k. They are defined as a sum of more
elementary deceptive functions fj of k variables (Goldberg et al. 1993).

l
fl@) = Z Fr(85), (6)

where s; are non-overlapping substrings of = containing k elements. We take as
example a deceptive function of order three. Let u denote the number of bits turned
on in the sub-string. Then f3 _ is defined as follows:

09 for u=0

3 _ )08 foru=1
faee = 0.0 for u=2
1.0 for u=3

Deceptive functions have been shown to be very difficult to optimize for a genetic
algorithm. Because it is deceived by the fitness values, a genetic algorithm will
converge to £ = (0,...,0). The genetic algorithm implicitly rates z; = 0 higher
than z; = 1 because it evaluates the variables x; individually and not in combination
(Miihlenbein, 1998). But deceptive functions are mathematically trivial to optimize.
Because the sets s; are disjoint, the fitness function is separable. It can be optimized
by separately optimizing the function f; on each set.

The optimization of a broader set of functions has been investigated by Tanese
(1989). She used Walsh polynomials to generate the fitness functions. The analysis
has been extended by Forrest and Mitchell (1993). They allowed functions with
overlapping sets, i.e. s; Ns; # 0. This class of functions is called additively
decomposed functions (ADF). ADFs have been also proposed as test functions by
Whitley et al. (1995) for continuous variables. ADFs are important in many areas
of science and economics.

A number of new evolutionary algorithms have been proposed which optimize
ADFs better than genetic algorithms. These algorithms try to detect and exploit
the structure of an ADF. The methods used can be described as follows:

e Adaptive recombination

e Explicit detection of relations (Kargupta & Goldberg 1997)

e Bivariate marginal distributions (Pelikan & Miihlenbein 1999)
e Dependency trees (Baluja & Davies 1997)

e Estimation of distributions (Miihlenbein & Paaf$(1996), De Bonet et al., (1997))



Adaptive recombination uses a number of heuristics to modify two-parent recom-
bination. Kargupta’s (1997) Gene Expression Messy Genetic Algorithm (GEMGA)
tries to detect dependency relations by manipulating individual substrings.

The last three methods are based on probability theory and statistics. They
use all the statistical information contained in the population of selected points to
detect dependencies. These algorithms will be investigated in this paper.

3. Evolutionary Algorithms Using Distributions

First we have to define the notation. In the following X; denotes a wariable,
X = (X1,...,X,) a vector of variables. Small letters denote an assignment,
ie. X; =x;. x = (x1,...,%,) denotes an assignment vector. II;, are subsets of
variables, 7, is a corresponding assignment.

Definition: An additively decomposed function (ADF) is defined by

fX) =" £(My)  S={s1,....,s1} si C{Xy,ldots, X,} (7)
s; €S

For simplicity we assume z; € {0,1}. We will often use shorthand f;(z) instead of

UMDA is one of the simplest algorithms using a probability distribution instead of
string recombination and mutation. It can be generalized to an algorithm which es-
timates a probability distribution and uses this information to generate new points.
We call this conceptual algorithm EDA.

EDA
e STEP 0: Set t « 1. Generate N > 0 points randomly.

e STEP 1: Select M < N points according to a selection method. Estimate the
distribution p®(z,t) of the selected set.

e STEP 2: Generate N new points according to the distribution p(x,t + 1) =
p’(z,t). Set t ¢t + 1.

e STEP 3: If termination criteria are not met, go to STEP 1.

The next proposition shows the convergence of EDA to the optimum.

Proposition 1: Let the mazimum f(x;,) = mazf(z) be unique. If the selection
method fulfills

1=p°(@m;t) < (1 = p(am,t)) 0<c<1 (8)
then EDA converges to the mazimum

lim p(zm,t) =1 (9)

t—o0



The assumption used for Proposition 1 is difficult to prove for a general distribu-
tion. For a specific probability model, the Boltzmann distribution, convergence
can be proven fairly easily. The Boltzmann distribution is often used in statistical
physics and plays a major role in the analysis of simulated annealing (Aarts et al.
1997).

Definition: The Gibbs or Boltzmann distribution of a function f is defined for
u>1 by

p(z) = Exp, f(z)

Y, Exp, f(y) (10)

where for notational convenience
Exp, f(z) == u/®  F,:=> Exp, f(y)
y
Remark: The Boltzmann distribution is usually defined as e 4 /Z. The term
g(z) is called the energy. Setting g(z) = 1/f(z) gives Equation 10.
We now define a conceptual EDA with Boltzmann selection.
BEDA

e STEP 0: Set t <« 1. Generate N > 0 points according to p(z,0) =
Exp,, f(z)/F, with u > 1.

e STEP 1: [Boltzmann selection] Compute for given v > 1

Exp, f(z)
>, Py, t) Exp, f(y)

ps(wat) :p(:c,t) (11)

e STEP 2: Generate N new points according to the distribution p(x,t + 1) =
p®(x,t). Set t <t + 1.

e STEP 3: If termination criteria are not met, go to STEP 1.

Boltzmann selection has been investigated by de la Maza and Tidor (1993).
It was not very successful for genetic algorithms. BEDA is more similar to a
simulated annealing algorithm. But it generates a population of points instead
of a single point in each step using the exact Boltzmann distribution. Simulated
annealing only approximates the Boltzmann distribution (Aarts 1997).

For BEDA the probability distribution can be explicitly computed. We start with
a lemma.



Lemma: Let p(z) be given by Equation 10. If Boltzmann selection is used with
basis v then the distribution of the selected points is given by

() = Exp,., f(x)

Y, Expy, f(y) (12)

Proof: We compute

sy _ Exp, f(z)  Exp, f(z)
P'@) = Fy X, p(y)Exp, f(y)
_ Exp,., f(z)
F, Y, 22 Exp f(y)
_ _Exp,, f(x)
>, Expy., f(y)

The next theorem follows by applying the lemma ¢ times.

THEOREM 1 For BEDA the probability distribution at generation t is given by

Exp,, f()

P = S Epy 1)

(13)

with w = u - vt.

Equation 13 is a system of nonlinear equations for the variables p(z,t). It com-
pletely describes the dynamics of the system. Note that p(z,t) remains a Boltzmann
distribution, only the basis changes with t. The next theorem is identical to the
convergence theorem of simulated annealing (Aarts, 1997).

THEOREM 2 (CONVERGENCE) Let Xop = {Z1opt; T2opt;--} e the set of optima.
Then under the assumptions of Theorem 1

1
i = ‘Xapi‘
Jim p(z, 1) { 5

S Xopt

else (14)

Because in general the computation of the distribution p(z, t) requires the compu-
tation of 2" parameters, EDA and BEDA are not efficient algorithms. Miihlenbein
and Paal (1996) have implemented an algorithm which approximates the dis-
tribution p®(z,t). This implementation, however, was not successful because the
algorithm tried both - to estimate the probability distribution and to generate new
points according to this distribution.

In this paper we investigate the case that the probability p®(z,t) can be generated
by a small number of factors. This method is called factorization of the probability
according to a probability model. This problem is investigated next.



4. Factorization of the Probability

In this section we describe a method for computing a factorization of the proba-
bility, given an ADF. The algorithm uses the following sequence of sets as input.

Definition: Given S = {s1,...,s1}, we define fori=1,2,...,1 sets d;,b; and ¢;

di =i s (15)

b,’ = 8; \d,;l (16)

C; = 8; n dz',l (].7)
We set dy = 0.

In the theory of decomposable graphs, d; are called histories, b; residuals and ¢;
separators (Lauritzen 1996).

THEOREM 3 (FACTORIZATION THEOREM) Let p(x) be a Boltzmann distribution
on X with

p(z) = BPu f(z)

7 with u > 1 arbitrarily. (18)
If
bi 0 Yi=1,...,1; d=2X, (19)
Vi >23j <i such that ¢; C s; (20)
then

Te;) (21)

Proof: The proof is based on a lemma.

Lemma: Let p(zq,z3,%y) be a marginal distribution with

P(Za, Tp,Ty) = 9(Tas 24) (25,27 ),

then
p(:ca,x,g, x’y) = p(ma,ww)P(ﬂﬂMﬂfv) (22)
P(Tar Ty) = 9(Ta, T) - Ev(x'y) (23)
and  p(za,z8|Ty) = p(Talzy)p(T8|2T,), (24)

that is, z, and xg are conditionally independent given z.,.



Proof: We calculate the marginal frequencies:

p(xa; x'y) = g(xa; x'y) Z h(yg, 1'7)

Ys

p(zp, ) = h(zp, ) Zg(yaam’y)

Ya
_ _hlzg,2y)
p(.fL'ﬂlfL"y) - Eyﬁ h(yﬁ;-z"y)

This gives Equation (22), Equation (24) follows directly from the definitions. By
setting hy(z,) = -, Mys,z,), the proof of the lemma is complete. O

The factorization will be proven by inverse induction on i. The induction step is
stated as follows. If

p(."c) = p(ﬂ-di )p(ﬂ-bi+1 |7TCi+1) T p(ﬂ-bl |7T01 )7 (25)
plrg,x) = FD(x) - FD () (26)

then there exist Fs(f _1)(:1:) such that

p('r) = p(ﬂ-di—l)p(ﬂ-bi 7rci) o 'p(ﬂ-bz |7TCZ)
p(ﬂ-di—l) = Fs(lz_l)(x) U F(z_l)(w)

8i—1
For i = I we set F\(z) := Exp, fs; (z) with j > 1 and F(z) = 7- Exp,, fs, (2).
Then the assumptions of the proposition are fulfilled, because p(mq,) = p(z). Now

let 1 <4 <[ be given. By (26),
p(ra) = F (@) - FD (@) - F{ (@)
S——

N ]

o) h(z)

Setting a :=d;—1 \ ¢;, B =0b; and vy =¢;, as s; = b; Uc¢; and b;Nd;—1 = 0, we get
by applying the lemma

p('”di) = p(ﬂ—di—l)p(ﬂ—bi |7r01') (27)
p(ra;_,) = F)(@)--- F) (@)he; (x) (28)

Because of the assumption ¢; C s; for some j < i, we can set

F(Z_l)(:l;') = Fs(;z)(x) ~ ok #.7

& F (@) he(m) k=
and thus
p(’”di—1) = Fs(f_l) (x) o Fs(j__ll)(.’[})
By inserting (27) into (25), we get
p(m) = p(”rdi )p(ﬂ-bi+1 |7rCi+1) T p(ﬂ—bl |7rCl)
= p(”rdi—l )p(’n—bi |7rCi )p('/rbi+1 |7rci+1) e 'p(ﬂ—bt |7rCl)

This proves the induction step. O



4.1.  The Running Intersection Property
Assumption 20 is called the running intersection property (Lauritzen 1996). If this
assumption is violated the factorization might not be exact. This problem and its

importance for optimization is discussed with the next example.

Example: Let the function be defined as

(@) = fi(z1,22,73) + fo(@1,74,%5) + f3(22,24,T6)

The numerical values of the functions are contained in Table 1.

Table 1. Function values

abc | f1(abc) | fa(abe) | f3(abc) |

000 | 0.8163 0.1629 0.6005
100 | 0.486 0.8815 0.5727
010 | 0.2703 0.4323 0.2719
110 | 0.5687 0.7498 0.7565
001 | 0.7921 0.0627 0.7949
101 | 0.4131 0.0911 0.3155
011 | 0.1524 0.8559 0.3235
111 | 0.616 0.7146 0.6533

The maximum is z,,, = (100001) and the second best value is * = (111100). The
factorizations

P1(x) = p(x1, T2, 23)p(T4, T5|71)p(T6| 22, T4)

Pa(x) = p(x2, T4, 26)p(1, T5|T4)p(23| 21, T2)

are only approximations. They violate the running intersection property.

Numerical results of a BEDA simulation are shown in Table 2. p® denotes the dis-
tribution after selection, p its factorized approximation, used for generating the new
points. The factorization p; generates the optimum less frequently than it appears
after selection (p1(%m,t+1) < p*(z,t)). The difference is so big that ultimately the
optimum will be lost. With factorization ps the effect is reversed. The probability
of the maximum steadily increases compared to the selection probability.

An exact factorization according to the factorization theorem is

p(z) = P(wl,302,$3)P($4,$5|$1,$2)P($6|$2,$4)-

For an exact factorization we have p(z,t + 1) = p®(x,t). The results from Table
3 confirm the theory. Note that FDA with a valid factorization converges more
slowly to the optimum than with the approximate factorization po.

Remark: The counterexample only shows, that if the running intersection
property is violated, BEDA might not find the optimum. It does not show that



10

Table 2. Numerical results for two approximate factorizations

| Gen | pi(am) | p1(zm) | P3(z*) | B1(z*) | p3(zm) | Po(zm) | PS(z*) | P2(z*) |

- 0.0156 - | 0.0156 - 0.0156 - | 0.0156
0.0318 0.0248 | 0.0301 | 0.0256 0.0318 0.0367 | 0.0301 | 0.0251
0.0420 0.0319 | 0.0410 | 0.0359 0.0628 0.0670 | 0.0405 | 0.0352
0.0479 0.0362 | 0.0509 | 0.0455 0.1012 0.1041 | 0.0502 | 0.0452
0.0502 0.0379 | 0.0597 | 0.0542 0.1441 0.1459 | 0.0592 | 0.0549
0.0502 0.0381 | 0.0679 | 0.0625 0.1894 0.1904 | 0.0673 | 0.0641

U W N

Table 3. Results for an exact factorization

| GEN | p*(zm) | plzm) | p(z*) | p(z*) | p123(100) | p123(111) |

1 - | 0.0156 - | 0.0156 0.1250 0.1250
2 0.0318 | 0.0318 | 0.0301 | 0.0301 0.1268 0.1732
3 0.0520 | 0.0520 | 0.0465 | 0.0465 0.1262 0.2220
4 0.0742 | 0.0742 | 0.0628 | 0.0628 0.1315 0.2636
5 0.0974 | 0.0974 | 0.0780 | 0.0780 0.1432 0.2958
6 0.1215 | 0.1215 | 0.0920 | 0.0920 0.1594 0.3196

the running intersection property is necessary.

The running intersection property is fulfilled if the interaction graph derived from
the sets s; is like a tree (Lauritzen 1996). Therefore the class of ADFs with a
numerical efficient exact factorization is limited, as the following 2-D Ising spin
systems shows.

Fraimg() = > Y Jymiz; m € {-1,1} (29)

i JEN(3)

The sum is taken over the four spatial neighbors N (i), but each J;; is used only
once. The objective function is purely quadratic. All factorizations fulfilling the
running intersection property on 2-D grids need large sets. We state without proof.

Proposition 2: All exact factorizations of ADFs defined on 2-D grids require the
computation of conditional marginal distributions of size O(y/n) where n is the
size of the grid.

We summarize the intricate relation between factorization and optimization of
ADFs: If the running intersection property is violated then BEDA may not con-
verge to the optimum. This can happen if the approximate factorization p(x) un-
derestimates the exact probability to generate the optimum (p(z.,) < p*(zm)). But



11

there exist also approzimate factorizations, which overestimate the probability of
the optimum. They converge faster than BEDA with an exact factorization. For
ezxact factorizations the probability of generating the optimum depends only on the
strength of selection defined by the basis v.

4.2.  Tree-like Factorizations

The factorization Equation 21 can be put into a normal form, where b; consists of
one variable only. Each distribution can be factored into

p(x) = p(x1)p(@2|z1)p(2s|ze, 1) - .. p(@nlzl,. .. 20 1) (30)

For each variable X; let II; C {X3,...,X;_1} be a set of variables that renders
X; and {X1,...,X;_1}\ II; conditionally independent. That is

p(xi|$la"'xi—l) :p(xiaﬂ'i) (31)
Then we obtain
p(@) = [[ plai, ™) (32)
i=1

It is easy to show that both factorizations (Equations 21 and 32) define the same
distribution. The tree factorization is used for Bayes networks (Frey, 1998).

5. The Factorized Distribution Algorithm

The theoretical results are used to define the Factorized Distribution Algorithm
FDA. We assume that an ADF and a factorization of the probability distribution
is given. The factorization can also be used at the initialization. For faster conver-
gence, a proportion of rx N individuals can be generated with a local approximation
of the conditional marginal distributions. The method will be explained in Section
5.1.

FDA,

e STEP 0: Set t « 0. Generate (1 —r) x N > 0 points randomly and r x N
points according to Equation 33.

e STEP 1: Selection

e STEP 2: Compute the conditional probabilities p®(my, |7, , t) using the selected

points.

e STEP 3: Generate a new population according to p(z,t + 1) =
I
Hi:l ps(ﬂ-bi 7TCi7t)




12

e STEP 4: If termination criteria is met, FINISH.

e STEP 5: Add the best point of the previous generation to the generated points
(elitist).

e STEP 6: Set t «t+1. Go to STEP 2.

FDA can be used with an exact or an approximate factorization. It uses finite
samples of points. Convergence of FDA to the optimum will depend on the size of
the samples. FDA can be run with any popular selection method. We usually apply
truncation selection. A comparison between Boltzmann selection and truncation
selection is made in Section 10.

FDA uses the probability distribution of the selected points for generating new
search points. This leads to fast convergence, with a certain risk of missing the
optimum. Sometimes we use the more conservative estimate

p(z,t+1) = 2p°(z,1) + (1 = A)p(a,1)

Here the new probability is a weighted average of the probability p®(z,t) and p(z, t).
Normally A is set to 1.

5.1.  Generating the Initial Population

Traditionally the initial population is generated randomly. But if an ADF is given,
initial points can be generated using this information. The idea is to generate
substrings s, with large local fitness values (i.e. f;(ms, is large) more often than
substrings with small fitness values.

The following method has been implemented. The true Boltzmann distribution
p(x) is approximated by a distribution p(x) which uses the same factorization as
p(z). In the approximation the conditional probabilities are computed using the
local fitness functions f;.

~ _ ﬁ(ﬂ-si) o Expu f’l'(ﬂ-si)
Pmle) = 5 T E e, B, f) %

with u > 1. The larger u becomes, the “steeper” the distribution becomes. u =1
yields a uniform distribution. u can be chosen so that

by setting

span := mgx{rrwl%x |fi(x) = fi(w)|}

u = 10'/span



13

n

Let us just discuss one example, initialization for function OneMax(n) = >,

For linear functions we have the factorization

lm’i'

n

p() = [ plas)

i=1
For OneM ax we obtain span = 1 and thus u = 10. This leads to

- - 10
Plei=0)=1 Bl@i=1)=,3
This means that z; = 1 is ten times more generated than z; = 0.

Such a biased sample may not generate a Boltzmann distribution. Therefore we
generate only half of the population by this method. The other half is generated
randomly.

5.2.  Analysis of the Factorization Problem

The computational complexity of FDA depends on the factorization and the pop-
ulation size N. The number of function evaluations to obtain a solution is given
by

FE =GEN, x N (34)

GEN, denotes the number of generations till convergence. The computational
complexity of computing N new search points is given by

compl(Npoints) ~ 1 x N (35)

|s;| denotes the number of elements in set s;. The computational complexity of
computing the probability p®(x,t) is given by

1
compl(p) ~ (Z 2151y« M (36)

where M denotes the number of selected points.

Thus the computationally complexity of FDA depends on N and the size of the
defining sets s;. In order to exactly compute all the probabilities we need an
infinite population. A numerical efficient FDA should use a minimal population
size N* still giving good numerical results. The determination of N* is a difficult
problem for any search method using a population of points. We have implemented
a simple factorization algorithm which assumes that the defining sets are sorted
into a sequence s;. Then the sets b; and ¢; such that b; # () are computed according
to the factorization theorem. Changing the sequence will change the factorization.
We have implemented only an elementary graph manipulation method to obtain a



14

good factorization. This is called Join functions. Functions f,, which are not used
in the factorization are joined with functions used in the factorization yielding new
functions that depend on more variables. Joining obviously increases the numerical
complexity of FDA. For the root set b; the sub function which is maximally non-
linear (measured as deviance from a linear square predictor) is chosen.

To compute a factorization with minimal complexity for an arbitrary ADF is
a very difficult task. We conjecture that this problem is in NVP. This research
needs deep results from graph theory. The problem of factorization of a probability
distribution is also dealt with in the theory of graphical models. The relation of this
concept to our method is explained in the next section. All progress in the theory
of graphical models can also be used for FDA.

6. Graphical Models

We have made a connection between ADFs and probability theory by using a Boltz-
mann distribution. For the Boltzmann distribution we have explicitly computed a
factorization. In this section we show how an ADF with a corresponding Boltzmann
distribution can be mapped to a graphical model (Frey (1998), Lauritzen (1996)).

Graphical models are probability models for p(z) where the independence
structure of the random variables z; is characterized by a graph. This graph is
usually called a conditional independence graph (CIG).

Definition: The random variables x; and x; are independent if and only if
p(zi,z;) = p(z;)p(x;). This is denoted by x;Llx;, which is a non-reflezive,
non-transitive and symmetric relation between x; and x;.

Next we define conditional independence.

Definition: The random wvariables =; and xz; are conditionally indepen-
dent given a set of random wvariables X with p(Xg) > 0 if and only if
p(xi, x| Xk) = p(xi| Xe)p(x ;| Xr). This is written x; Lx;| Xy.

We are now able to define a conditional independence graph.

Definition: To the set of variables X we associate a conditional independence
graph (CIG) G = (V,&). The variables x; € X define the vertices V, and the set of
edges £ are constructed as follows

(zi,25) ¢ € & zila;|V\{zi,z;}

This means, in a CIG the absence of an edge in £ implies an independence relation
between the two random variables with respect to the remaining n — 2 vertices. The
construction of a CIG starts with the complete graph. Then edges are eliminated
according to their conditional independence to the rest.



15

We now relate our ADF structure to the concept of conditional independence.

The following theorem defines a conditional independence relation for the variables
of an ADF.

THEOREM 4 Let S; := {s € S|x; € s}, Sj := {s € S|z; € s} and Sg := S\(S;US;).
This means S; is the union of all sets containing x;. If S;NS; = 0 then with

fz) = Z fs(ms) + Z fs(ms) + Z Js(ms)

SES; sES; sESR

) = 2SO

x; is conditionally independent of x; given R := X \ {x;,2;} , i.e.

p(zi, x| R) = p(xi| R) - p(z;| R) (37)

Proof: According to the the lemma from Theorem 3, Equation (24), it is sufficient
to show that

Remember that f is a function of X, but depends only on the variables from s.
Then

p(l'i,xj,R) = (H Expu fs(ﬂ's)

SES;

) ) (Hsesj Exp,, fs(ms) HsESR Exp, fs(”s))
F,

As z; ¢ s for s € S;, the left term is a function that does not depend on z;j,
whereas the right term does not depend on z; by the assumptions. Then, applying
the lemma, the theorem follows. [l

Theorem 4 shows how a CIG for an ADF can be constructed. But the construc-
tion is fairly complicated. It can be simplified as the following proposition shows.

Proposition 3: Two variables x;,x; of an ADF are connected by an edge in the
CIG if and only if there exists s with z;,x; € s.

The proof follows directly from Theorem 4 and the definition of conditional inde-
pendence.

An ADF can be mapped to a corresponding CIG. But obviously information is
lost. For instance, the two functions

f(.’ll') = f($1,$2,$3)
fa(®) = f(x1,22) + (22, 23) + f(3,22)



16

give the same CIG, but the structure of the two functions is very different. f, is
obviously easier to optimize than f.

The main factorization theorems of CIGs are difficult and are based on graph
theory. The interested reader is referred to Frey (1998) and Lauritzen (1996).
They have shown that the running intersection property is only fulfilled for tree
like CIGs.

7. Constraint Optimization Problems

An advantage of FDA compared to genetic algorithm is that it can handle
optimization problems with constraints. Mendelian recombination or crossover
in genetic algorithms often creates points which violate the constraints. If the
structure of the constraints and the structure of the ADF are compatible, then
FDA will generate only legal points. This will be shown next.

Definition: Let an ADF be given. We assume that the constraints are given by
expressions C;(Yy,). The constraints are compatible to the ADF structure if

Y,, C II,,. (38)

Each C; defines an assignment of values to variables in II;, considered to be illegal.

The next theorem shows that FDA will not generate illegal assignments if the
initial population consists of legal assignments only. =z € X is said to fulfill the
constraints (x € X°) if

Viims, € X7 =1, \ Y5, (39)

THEOREM 5 If the initial search points fulfill the constraints then aoll points gener-
ated by FDA fulfill the constraints.

Proof: We show by induction that
Vt Z 0a7r5i € }/Si == p(ﬂ—si’t) =0 (40)

e t =0:If there exists ¢ such that w5, € Y;,, then by definition z ¢ X°¢ and by
assumption p(z,0) = 0.

e t — t+1: We assume that Vz with 75, € Yy,: p(ms,,t) = 0. Now let = be
arbitrary with wy, € Y, then p(ns,,t) = 0 and thus p(z,t) = 0. For FDA we
get p®(z,t) = 0. As this is valid for all z with 75, € Y;,, we have p®(ns,,t) = 0.
The conjecture follows from

p(rs;, t + 1) = p°(ms,, ) = 0.



17

O

A different algorithm for constraint optimization based on graphical models was
proposed by Dechter and Pearl (1988). In their model the constraints define the
legal assignments. Therefore the ADF graph has to be contained in the constraint
graph (X, CYs,).

8. Detection of a Decomposition

If the function is not explicitly given as an ADF, either the function has to be
decomposed or the Boltzmann distribution has to be estimated without any knowl-
edge about the structure of the function. FDA is based on a known decomposition.
It does model fitting, not model selection. This separation of model fitting and
model selection is used in many areas of statistics because model selection is more
difficult than model fitting.

For discrete variables the model selection problem can be described as follows.
The number of possible probability models is equal to the power set of the number
of free parameters. Even if we assume that the number of free parameters of
the probability models is restricted, e.g. m, the number of all possible probability
models is 2. This demonstrates how difficult model selection is in general. Several
methods have been proposed to detect a decomposition. We just summarize these
here.

8.1. Detection of the ADF Structure

The following simple method is not intended to suggest a general solution to the
selection problem. But it demonstrates that it is possible to detect a decomposition
in O(n?) time if additional assumptions are made concerning the class of functions
considered.

Each discrete function of n binary variables can be written in the following form.

n
f@)=a9o+ Zai:vi + Z G joaZj1 Ty + - (41)
i=1

1<j1<j2<n

Definition: A function f is hierarchically decomposable of order k if aj,..;, = 0
for 1 > k. Furthermore aj,..; # 0 for I < k if and only if all lower order
coefficients containing a subset of the indices are not equal to zero.

THEOREM 6 If the function f is hierarchically decomposable of order k and if for
each j1 the number of coefficients a;, ;, # 0 is less or equal to k then the coefficients
of Equation 41 can be determined in at most O(n? + k*=Vn) function evaluations.



18

Proof: The proof is done by computing the representation (41). We have

aop :f(O,,O)
a; = f(0,...,0,1,0...0)—ag i=1,...,n
Qjy jo =f(O,...,1,0,...,1,0,...,0)—a0—a]-1—aj2 1<51<j2<n

This computation needs O(n?) steps. In the next step we compute the coefficients
of order 3 for aj,;, # 0 and aj,;, # 0. We obtain

Qjrjajs = f(Zjijajs) — Q0 = Qjy — Qjy — Qjg — Qjyjo — Ajajs — Ay js-

Tj,j.j; denotes the vector with bits on at loci ji, jo, js and O everywhere else. The
number of function evaluations is at most n * k * k. This can be shown as follows.
Because of the hierarchical decomposition there are at most kxn coefficients aj, ;, #
0 and at most k coefficients aj,;, # O for given j,. This means that only k?n
coefficients a;, j,;, are not equal to zero.

Now for k£ > 4 the fourth order coefficients are computed under the assumption
aj,jrjs 7 0 and aj,j, # 0. Here the number of function evaluations is k?n x k. This

procedure is iterated until order k. The coeflicients of k-th order are computed in
O(k*—'n) steps. O

For hierarchically decomposable functions an additively decomposed function can
be easily generated after the subsets s with a;, . ;. # 0 have been determined. We
just discuss a simple example. Let the representation be

3
f@) =ao+ Y aimi + 12812 + a2

i=1

Then s1 = {z1,z2} and s2 = {z2,23}. Now set

f(@) = filzr,22) + f2(22, 23)
f1 (.’El,.Z'Q) 1/2@0 + a1z + 1/2&2:122 + a12x172
f2(.€l§2,$3) 1/2&0 + asxs + 1/2&2332 + Q232223

8.2. Detection of Independent Variables

In statistics a discrete version of the mixed partial derivative is often used to detect
that two variables are contained in different subsets s.

LEMMA 1 Define for x and {i,j} = I, \ {i,j}

- [f(iL'ZZ].,ZL']:O,IE{E}) - f(iL'ZZO,ZL'J:O,IL'{E})]



19

Then we have: A;;(f, w{i—j}) =0 for all x € X if and only if there is no k such
that X;, X; € sy.

A general dependency measure for two variables has been proposed by Linfoot.
It is now known as Kullback-Leibler cross entropy measure (Jordan, 1999). It
is similar to the measure of linkage disequilibrium used in quantitative genetics
(Miihlenbein, 1998).

Dep(X;,Y;) = Y (p(wi,z;) log p(wi, 7;) — p(zi)q(;) log p(zi)p(z;))  (43)

Ti Yj

We have Dep(X;,Y;) > 0 and Dep(X;,Y;) = 0 if and only if X; and Y; are
independent. Dep gives a quantitative measure of dependency, not just a binary
variable with values dependent/independent.

8.8. Learning the Structure of the Probability Model

For graphical models a number of methods have been proposed to learn the struc-
ture of the probability model. The interested reader is referred to (Jordan, 1999).
The proposed methods require between O(n?) and O(n? * N) computations. In
the next section we discuss FDA in the context of the schema theorem of genetic
algorithms.

9. The Schema Theorem and Factorization

Our results provide also additional insight into the schema theorem of genetic al-
gorithms. We state the schema theorem in its simplest form (Goldberg (1989),
Holland (1992)).

THEOREM 7 (SCHEMA THEOREM) For a genetic algorithm using proportionate se-
lection, mutation rate p,, and crossover rate p., the expected proportion p(H,t) of
a schema in population P(t) changes according to

p(H,t+1) > p*(H,t) (1 — e(pc, pm)(1 — p(H, 1)) (44)
where
s _ f(H,1)
p(Ha t) = Z p(x,t)
z€HNP(t)
1
100 = Sy 3 s
f@) = p(z,t)f(z)



20

We do not need the numerical expression of the factor e here. The schema theorem
is used to argue as follows: If a schema H is always a factor 1 + ¢ better than the
average, it will increase exponentially in the population (Goldberg, 1989). This
follows from

p(H,t+1) > (1+ ¢)p(H,t)(1 — e(pe, pm))-

This qualitative argument cannot be used to explain the dynamic behaviour of
schemata. First, the value of a schema f(H,t) depends on the population P(t).
Second, we need precise estimates of schemata containing the optimum to prove
convergence of the genetic algorithm to the optimum. Other schemata are irrel-
evant. But one can easily construct fitness functions where the frequencies of all
schemata containing the optimum decrease. The most popular example is the
“deceptive function” of order 3 defined in Section 2. It is known that a genetic
algorithm with proportionate selection and crossover converges to x = (0,...,0)
instead of x = (1,...,1). This result has been called “anomalous” because it vio-
lates the conclusion drawn from the schema theorem. But there is nothing anoma-
lous. The schema theorem cannot be used to explain the evolution of schemata in
a population.

We will show the complexity of the dynamics of the frequencies of schemata with
BEDA and FDA. Let us recall from Equation 4 that the fixed variables of H define
the corresponding marginal distribution. If sy denote the fixed variables then
p(msyx,t) = p(H,t). The schema theorem of BEDA is only valid for Boltzmann
selection, not proportionate selection. Therefore we define the fitness of a schema
H and the average of the population for Boltzmann selection. These are given by

1
w(H,t) = z, t)vf @
fo(H, 1) 2D wel;:})(t)p( )
fo(t) = Z p(z, t)vf @),
zEP(t)

From Theorem 1 easily follows:

Proposition 4: For BEDA the distribution of any schema H is given by

o(H,t
p(H, t +1) = p* (H, £) = p(H, t)ff-(—(t)’ (45)
Proof: We have for all z
/@)
> 0,000

Summing over all x which are an element of H gives the assertion.

p(.CL',t + 1) = p(a:,t)

O



21

0.2 1 1 1
0 5 10 15 20

Figure 1. Distribution of schemata (x,x,1) (solid line), (*,%,0), (x,1,1) (solid line) and (x,0,0)
for BEDA with v = 1.5 optimizing a deceptive function of order three

Proposition 4 can be used to compute the distribution of schemata for any fitness
function. In Figure 1 the deceptive function f3,, is optimized. Even with BEDA the
schemata containing the optimum decrease at first, whereas the “wrong schemata”
containing not the optimum increase. This means that at first the value of the
“cood” schemata f(H,t) is less than the value of the corresponding wrong schemata
not containing the optimum. But in contrast to genetic algorithms BEDA or FDA
cannot be deceived in the long run. After a certain number of generations the
good schemata increase and overtake the wrong schemata after generation 12. This
example shows how complex the dynamics of the distribution of the schemata can
be. The dynamics is defined by the nonlinear difference equation 45.

The same behaviour has already been observed for the genetic algorithm by Gold-
berg (1989). For a genetic algorithm there are even two bit problems, where the
GA will not converge to the optimum.

BEDA is only a conceptual algorithm. Therefore it is unfair to compare BEDA
with a genetic algorithm. But FDA can be compared with a GA. This comparison
provides new insight into another qualitative argument used in the theory of GAs,
the building block hypothesis (see Goldberg, 1989). From the schema theorem it
is derived that by a GA “short, low-order, and highly fit schemata are sampled,
recombined, and resampled to form strings of potentially higher fitness.” These
schemata are called the building blocks. We investigate this argument for FDA.
The following proposition follows from our factorization theorem.



22

Proposition 5: Let a valid factorization (21) be given. Then for any schema H
which is defined on a set consisting of a union of sets of the factorization we have

p(H, ¢ + 1) = p(it, ¢ 721 (46)

fo(®)

The proposition shows that for FDA the important building blocks are given by the
factors of exact factorizations. A lower bound on the size of the building blocks is
given by the size of the sets s;. Building blocks of smaller size are not contained in
any valid factorization. If FDA is used with an approximate factorization based on
building blocks that are too small, then FDA might not converge to the optimum.

For genetic algorithms with proportionate selection the analysis of the dynamics
of the distribution of schemata is very difficult. Only two or three bit problems
have been investigated analytically. An in-depth numerical study of the simple
genetic algorithm has been made by Forrest and Mitchell (1993). They reached the
following conclusions

e Overlap in the defined loci is the principal reason for the difficulty in optimizing
the function.

e The lack of information from low-order schemata was a secondary cause of GA’s
poor performance.

Both problems are solved with our FDA. Overlap is not a problem as long as
an exact factorization can be computed. The factorization also determines the
schemata which guide the FDA to obtain the optimum.

We would like to mention that Miihlenbein (1998) has given many arguments
that string based Mendelian recombination used in genetic algorithms is not able
to detect higher order schemata necessary to optimize difficult ADFs. This fact
explains all the “anomalous” results of genetic algorithms.

10. Approximate Convergence Results

For Boltzmann selection we have analytically derived exact difference equations for
the marginal distributions. FDA mainly depends on the factorization, not on the
function values. Numerical experiments have confirmed that the behaviour of FDA
is very similar for functions having a similar factorization. This can be explained as
follows. If the subsets s; are disjoint, then the fitness function can be mapped to a
generalized linear function with macro variables m; which can be defined as integer
representations of s;. Therefore FDA should behave similar to an UMDA used with
integer variables (Miihlenbein and Mahnig (1999a)) if the ADF is separable. This
should also be true for ADFs where the sets s; overlap in a chain-like manner.

For UMDA the OneMaz function plays a central role. It leads to a “typical”
fitness distribution for ADFs. For OneMax we are able to compute the distribution
p(z,t) both for Boltzmann selection and truncation selection.



23

THEOREM 8 For Boltzmann selection with basis v the probability distribution for
OneMazx is given by

@)
p(z,t) = ( (47)

14 ot)n
The number of generations needed to generate the optimum with probability 1 — € is
given by
In2

GEN w158 (48)

Proof: The first two assertions of the theorem follow from Theorem 1. We note
that for OneMax

thf(y) - Z (7;) i = (14 0H)"
Yy =0

The third assertion is obtained by solving the equation

,Utn
A
1+ o)n ¢
Using a Taylor expansion we obtain from
1
t
v ———— 1
1—-%/1—¢
the result v! ~ n/e. O

For truncation selection an approximate analysis was already done in (Miihlenbein
et al. 1994, Miihlenbein, 1998). For simplicity we assume that in the initial popu-
lation all univariate marginal distributions are equal (p;(z; = 1,t = 0) = pg). Then
pi(z; = 1,t) := p(t) for all t.

THEOREM 9 For truncation selection T with selection intensity I, the marginal
probability p(t) obeys for OneMax

plt+1) = pl) + = \/mp( 1 — (D). (19)

This equation has the approximate solution (po := p(0))

p(t) =05 (1 + sin (%t + arcsin(2po — 1))) (50)

where

s

t< (g — arcsin(2po — 1))



24

The number of generations till convergence is given by

GEN, = (g — arcsin(2py — 1)) ? (51)

The relation between 7 and I, depends on the fitness distribution (Miihlenbein,

1998). Assuming that the fitness distribution is normal, I can be computed from
the error integral. For normal distribution we obtain the values shown in Table 4.

Table 4. Selection intensity

| 7] 075 ] 0.5 | 0.25 | 0.125 | 0.06 |

| T | 042 | 0.8 | 1.27 | 1.65 | 1.97 |

A very different fitness distribution is generated by the function

n

Int(n) = Z 201 (52)

i=1

Here all 2" assignments of = have a different fitness value. We first consider trun-
cation selection with 7 = 0.5 and a large population size. After one generation of
selection the n-th bit will be fixed. The other bits will not be affected by selection.
After the next generation bit (n—1) will be fixed etc. Convergence to the optimum
is achieved after n generations.

For truncation selection with 7 = 0.25 two bits will be fixed in every generation.
Convergence will be reached after n/2 generations. Therefore we obtain for Int

THEOREM 10 For truncation selection with T = 27 %;k > 1 the number of genera-
tions to converge to the optimum for Int is given by

GEN, = % (53)

For the fitness distribution derived from Int the selection intensity is I, = k for
T = 27k, Therefore GEN, scales inversely proportionate to I,. The same result
was obtained for OneMax. But for this function GEN, scales proportionate to n.

A big problem for all population based search methods is their dependency on
the population size. Here UMDA and FDA have a nice numerical property. If the
population is larger than a population N*(7) then

GEN.(N) = GEN.(N =o00) N > N*(7) (54)

This behaviour has been confirmed by many numerical experiments. It means that
the number of generations to converge remains constant for N > N*(7). N*(r) is



25

called the critical population size, defined as the minimal population size needed to
find the optimum with high probability, e.g. equal to 99%. The determination of
the critical population size N*(7) is very difficult. We did not yet succeed with an
analytical formula.

For determining an “optimal” 7, we have to compute for each 7 the critical
population size N*(7).

Definition: The optimum truncation threshold 7,5 is defined by

Topt = min FE(7) = min GEN,(7) * N*(7) (55)

It is obvious that strong selection reduces GEN,. But for strong selection
the population size N*(7) has to increase in order that FDA does not converge
prematurely. The relation between selection and population size N* has been
investigated by Miihlenbein and Schlierkamp-Voosen (1993b) for genetic algorithms
and by Mihlenbein and Mahnig (1999b) for FDA. In both cases the same result
was obtained.

Rule of Thumb: The optimal truncation threshold for FDA is contained in
0.125 < 7 < 0.4. A good choice is T ~ (.3.

Asymptotically truncation selection needs more number of generations to con-
vergence than Boltzmann selection. GEN, is of order O(In(n)) for Boltzmann
selection and of order O(4/n) for truncation selection. But if the basis v is small
(e.g. v =1.2), and € = 0.01 then even for n = 1000 truncation selection converges
faster than Boltzmann selection.

0.9 ]

p(t)

07 +

<< ——
mnn
o i

0.5 J I I I
0 5 10 15 20

Generation

Figure 2. Probability p(t) for OneMax with Truncation selection and Boltzmann selection



26

The different behaviour of Boltzmann selection and truncation selection is shown
in Figure 2. The two equations 47 and 50 are plotted for reasonable values of v
and I. For v = 1.2 Boltzmann selection selects slightly more severe than trunca-
tion selection with I = 0.8 at the beginning. It gets weak when the population
approaches the optimum. The same behaviour can be observed for v = 1.5. In
fact, all selection methods using proportionate or even exponential proportionate
selection like Boltzmann selection have this problem. If the fitness values in the
population differ only slightly, selection gets weak. Truncation selection does not
have this problem. It selects much stronger than Boltzmann selection when ap-
proaching the optimum. Therefore truncation selection with I = 1.6 converges
faster than Boltzmann selection for v = 1.5.

The convergence of Boltzmann selection can be speeded up if an annealing sched-
ule is used. This means that the basis v has to be changed during the run. But
how and when should this be done?

Miihlenbein and Mahnig (1999b) have taken a different approach. They show that
FDA used with truncation selection leads for the fitness distribution of OneMax
to a sequence of Boltzmann distributions. This means that truncation selection
implicitly generates an annealing schedule. Table 5 gives the annealing schedule for
two values of 7. We conjecture that the annealing schedule for 7 = 0.3 is almost
optimal.

Table 5. Annealing schedule T'(t) for OneMaxz and n = 32

| et |2 | 3 | 4] 5 |6 7 | 8] 9 [10]
7:0.5‘3.51‘1.73‘1.13‘0.82‘0.63‘0.49‘0.39‘0.30‘0.21‘ 0‘

7=03 | 241 | 1.16 | 0.73 | 0.51 | 0.35 | 0.21 0

We summarize the major results for truncation selection.
e GEN, is bounded by n/I, for 7 < 0.5.
e For “typical” fitness distributions GEN, is proportionate to /n/I, for 7 < 0.5.

This means that FDA will converge in at most n steps for 7 < 0.5. Usually it
will converge in about O(y/n) steps. FDA will not converge to the optimum if the
population size is too small.

In the next section we show that the approximate analysis predicts the numerical
results exactly.

11. Numerical results

This section has two purposes. First, we want to show that FDA behaves like
the theory predicts. Second, we will show that it can solve difficult optimization
problems.



27

We will first investigate the conjecture concerning the number of generations until
equilibrium. In addition to F; (X) = OneMaz(n) the following two functions will
be analyzed:

!
F(X) = Zf2(ﬂs,-$) 8; = {Z3i—2, T3i—1, T3i }
i=1

!
F3(X) = Zf3(ﬂs,-33) 8; = {Z3i—2, T3i—1, T3i }
i=1

In F> we set fo(Il5, ) to the values of the OneMaz function of order three. F is
thus identical to Fi. For F3 we set f3(1,1,1) = 10 and all other values to zero.

Given our theory we expect the following results. GEN, should be equal for F'1
and F2. GEN, should be smaller for F'3 because here FDA has to test only two
main alternatives — (1,1,1) and all the rest. For FDA Fj is just like a OneMax
function of size n/3, where the probability of generating the important substring
(1,1,1) is smaller. With random initialization the string with (1,1,1) will be gen-
erated with probability po = 1/8. For all cases the expected number of generations
Gen, can be computed from Equation (51).

Table 6. Generations GE N, until convergence, truncation threshold 0.3

| n | i | F2| F3 | GENe(po=0.5)) | GENe(n/3,po = 0.125) |

30 70 | 70| 6.2 7.2 6.4
60 10.0 | 10.0 | 9.0 10.1 9.0
90 12.2 | 12.3 | 11.0 12.4 11.0
120 14.2 | 14.4 | 12,9 14.4 12.7
120G4 | 18.8 | 18.8 | 21.3

150 16.0 | 16.3 | 14.1 16.0 14.3
180 17.2 | 17.8 | 15.9 17.5 15.6

The results from Table 6 confirm our prediction. Note how precisely Equation 51
predicts GEN, obtained from actual simulation with FDA. GA is a genetic al-
gorithm with truncation selection and uniform crossover. It needs slightly more
generations for OneMaz than UMDA. This was already observed in (Miihlenbein
et al., 1993b). For the function F3 the genetic algorithm needs almost twice as
many generations as FDA, which has knowledge about the micro-structure of F'3.

We will now turn to more difficult fitness functions. The following test suite is
used. The deceptive sub-function f3  has been defined before. It is used to define
the separable deceptive function of order three

l
FDec(x) = Z fgec(nsix)'
i=1



28

s; are non-overlapping sets of three variables. The factorization of the distribution
is obvious, because the function is separable.

The next function is composed of two sub-functions. Let u denote the number of
bits turned on in the sub-string. We define

Il for u=0
ffl={%1-1 foru=3
0 for else

Function f} has only one non zero element, f4(1,1,1) = I. These two functions
are used to define the function FrsoChain

-1
FIsoChain(x) = Zf{(HSzx) + fé(HSlx)

=1

where s; N 8;4+1 = %2;+1. This function is not separable, it has a chain like in-
teraction structure. The variables z2;41 are contained in two sets. This func-

tion is very difficult to optimize. The global optimum is z,, = (1,1,...,1) with
Frsochain(Tm) = 1(I—1)+1. This optimum is triggered by fi. It is very isolated, the
second best optimum is given by z = (0,0, ... ,0) with a function value of I(I — 1).

For this function a factorization with b; = s; \ si—1, so = 0 and ¢; 11 = 22i41,¢1 =0
has been used.
For numerical comparison we also consider the separable function

-1

Fehain(z) = Z f{(Hs;z') + f2(Il, @),

i=1

where s; N Si+1 = @

The last example is a two dimensional Ising system, defined in Equation 29.
It is known that computing the minimum energy of an 2-D Ising model is an
NP problem. But if we restrict J;; € {—1,1} a polynomial algorithm is known.
Toulouse (1977) has reinterpreted the energy minimization of 2-D Ising models as
an optimal matching in a graph whose nodes are just the frustrated plaquettes of
the underlying Ising lattice. A square plaquette is frustrated if it has exactly one or
three couplings J;; = —1 on its perimeter. A frustrated plaquette cannot attain the
4-term minimal energy of -4, whereas an unfrustrated one can. It has been shown
earlier that there are polynomial algorithms to compute a matching with minimum
weight (Lawler, 1976). We have used this method to compute the exact solution of
a fairly difficult free boundary problem on a 11*11 grid.

We recall that an exact factorization requires sets of order O(y/n). Therefore
we have used an approximate factorization. The defining sets s; are given by four
neighbors defining a square. If we sequentially number the spins then for a 11 % 11
grid we obtain

p(w) = p($1,$2,$12,$13)P($3,$14|$2,$12) * ... *p($121|$109,$1107$120)

This factorization violates the running intersection property.



29

Table 7 gives the numerical results. In order to shorten the computation time,
the runs have been stopped after the first occurrence of the optimum, after all
individuals are equal, or after a specified maximum number of generations. GEN
gives the generation count when stopped.

Table 7. Numerical Results, truncation threshold 0.3

| F |n | 1] Alg. | GEN | popsize | best |
Fpec 90 30 | FDAgo 11 1000 30
Fpee 90 | 30 | FDAos 7 1000 30
Fpee 90 30 GAr 32 5000 27.1%*
Fchain 60 | 20 | FDAos 5 1000 400
Fohain 90 | 30 | FDAg5 7 1000 | 900
Fohain 120 | 40 | FDAgs 9 1000 | 1600
Fohain 90 | 30 GAr 25 5000 | 900
Froochain | 51 | 25 | FDAg.0 6 1000 | 601
FreoChain | 101 | 50 | FDAgo 9 2000 | 2451
FrsoChain 151 75 | FDAg.o 13 5000 5511
Frooohain | 151 | 75 | FDAgs 4 1000 | 5511
FIsoChain 101 50 GAT 30 5000 2450%*
Flaing 121 FDAg s 11 1000 | 178
Flaing 121 FDAg s 11 2000 | 178
Frsing 121 GAr 40 5000 174*

GEN mainly depends on n, despite the differences of the fitness functions. This
was predicted by the asymptotic theory. The scaling is about O(y/n), even for
IsoChain . There is not a large difference between the results of Frgng and of
the separable Fopqin, if the same number of variables is considered. For separable
functions an initialization according to Equation 33 speeds up the convergence. For
Fpe. the number of generations is reduced from 11 to 7. A dramatic improvement
can be observed for Frgsochain- For m = 151 the number of generations are reduced
from 13 to 4. In addition NV can be decreased from 5000 to 1000. This result can be
explained. By using Equation 33 strings (0,0,0) and (1,1, 1) are mainly generated
at initialization because the fitness values of other strings are 0. FDA then only
has to evaluate these two alternatives. For random initialization Equation 51 is a
very good prediction for GEN,.

We have already mentioned that GEN remains constant if the population size is
larger than the critical population size. This is shown with the Ising model. GEN,
is 11 both for N = 1000 and N = 2000.

For FDA the complexity of the optimization problem is only reflected in the
population size N. The more difficult the optimization, the larger the population
size has to be. The Ising model needs a surprisingly small population size, whereas
the critical population size is largest for Fjzochaein With random initialization. The



30

optimization of Frgochain for n = 201 needs a very large population size (N =
20000).

For comparison we also note the results of a genetic algorithm G A7 with uniform
crossover and truncation selection. The genetic algorithm is not able to find the
optimum of the separable function Fp.. and the function Frsochain- The solution
of the 2-dimensional Ising model seems surprisingly simple. Even GAr found the
optimum once in 10 runs. In all cases FDA outperforms the genetic algorithm by
far, in quality of solution obtained and/or in number of function evaluations needed
to obtain the optimum.

11.1.  Optimum Number of Function Evaluations

In order to determine the minimum number of function evaluations needed to find
the optimum, the critical population size has to be computed. Table 8 presents
some results on the minimum number of function evaluations for Fp... To make
the problem slightly more difficult, we have simulated Fp.. with a 4-bits deceptive
problems with one overlapping variable which makes no contribution to the fitness
function. The data are averaged over 10 runs, with a constant probability of success
of 90%.

Table 8. Minimum number of F'E for a decep-
tive problem of size 60.

| T | 042 | 08| 1.27 | 1.65 | 2.14 |

| GEN. | 26| 15| 9| 7] 5|

| Fpee | 10500 | 6400 | 5000 | 4800 | 7200 |

Note that GEN, is inversely proportionate to the selection intensity I as predicted.
The smallest number of function evaluations F'E are obtained for 1.0 < I < 1.65
corresponding to truncation thresholds of 7 = 0.4 and 7 = 0.125. Truncation
selection is therefore a robust selection method. This experiment confirms our rule
of thumb.

Next we investigate this problem with more difficult functions. They have one
variable as overlap, the interconnection structure is a chain as before. The function
Fc4 and F¢b are composed of the following sub functions.

e Function F3, . and F>, -
0.595 for 000 1.00 for 100
3 0.200 for 001 0.05 for 101

cubanl = \ 0595 for 010  0.09 for 110
0.100 for 011 0.15 for 111



31

4% F3 ' = =

otherwise
e Function F3, .-
u for Oxx%xx0
o . 0 for Osx=xl
cuban2 — u for 1x%xx0
u—2 for 1xxx1
e Function Fc4:
L-1
FC4(.’L') = Z Fc5uba,n1 (Hsj .73) (56)
=0

where the s; are substrings of = containing 5 variables. The last variable of s;
is the first variable of s;41, L is odd.

e Function Fc5: Here the functions F5, . and F2, ., are used alternating.
(L-3)/2
FC5(.Z‘) = Fc5uban1 (Hsox) + Z (Fc5ubu,n2 (H32*1+1$) + Fc5uban1 (H32*j+2 :L'))
=0

(57)

where the s; are defined as for function Fe4 and L =4+m + 1

The optima of functions F'e4 and F'¢b are not given by summation of local optima.
Furthermore the global optimum is not unique for every instance of the problem.

First we give numerical results for function Fc4 with 25 and 49 sub-functions
giving 101 and 197 independent variables. For 25 sub-functions the unique
global optimum is 61.6, for 49 components it is 119.2. The next optima are
119.16,119.12,119.08. The fitness values differ only at the fifth place. The require-
ment to hit the global optimum in every run is very hard. Therefore the number
of function evaluations are high, compared to the functions solved before.

The results are shown in Table 9. GEN, is inversely proportionate to I as pre-
dicted. The smallest number of function evaluations are obtained for 1.0 < I < 1.65.
This is another confirmation ffor our rule of thumb.

Function F'¢5 was also consistently solved by our algorithm. The global optima
for n = 37,69,101, 133,205 are f = 25.6,47.2,68.8,90.4,138.98. The fitness values
of the second best optima are almost as large as the fitness of the global optimum.
Therefore it is a very severe condition to require that the global optimum is found.

Table 10 gives numerical results. Note that GEN, increases like y/nln(n) with n.
The optimal truncation threshold seems to be 7 = 0.125, in contrast to our rule of
thumb. But this is due to the fact that not enough runs have been made. A more
detailed investigation by Miihlenbein and Mahnig (1999b) gives 0.125 < 7 < 0.4 as
optimal 7.



32

Table 9. Numerical results for function F'c4

| | n =101 | n =197 |

| 1 | 08| 127 | 165| 08| 1.27| 165]
GEN. 19 12 9 29 19 14
N 2000 | 2500 | 3000 | 2500 | 3500 | 4000

| Fed | 38000 | 30000 | 27000 | 72500 | 66500 | 56000 |

Table 10. Numerical results for function F'c5,
truncation threshold 0.125

| n | 37 ] 69| 101 | 133 | 205 |
GEN. 6 8 9 12 14
N 500 | 850 | 1000 | 1400 | 3500

| F¢5 | 3000 | 6800 | 10000 | 16800 | 49000

12. Conclusion

In this paper we have presented the Factorized Distribution Algorithm FDA. It
uses a population of search points to optimize a given function. FDA efficiently
optimizes a class of binary functions which have been too difficult for traditional
genetic algorithms. For Boltzmann selection FDA behaves like an ideal “schema
algorithm”, because the schema equation is exactly fulfilled for all schemata which
are compatible with a factorization of the probability distribution. The factoriza-
tion theorem shows which schemata have to be used in order to find an optimum
of the function. We have also shown that FDA with Boltzmann selection is an
ideal simulated annealing algorithm. FDA uses an exact Boltzmann distribution,
whereas simulated annealing only approximates the Boltzmann distribution.

FDA is a well-defined stochastic algorithm. It is a hybrid between genetic algo-
rithms and simulated annealing. It has only one parameter to be set, the population
size. This should be contrasted to genetic algorithms, where mutation, recombi-
nation and selection are problem specific. The theory of FDA combined with the
results from Miihlenbein (1998) is able to explain the “anomalous” results of tra-
ditional genetic algorithms based on Mendelian recombination. The factorization
theorem shows that overlap of the variables in the sets s; is not making the opti-
mization difficult by itself, but the difficulty depends on the size of the sets used in
the factorization. The factorization theorem requires that the running intersection
property is fulfilled. This property leads to inefficient factorizations for 2-D grids.
Here the size of the sets of an exact factorization scales like O(y/n) and therefore
the complexity of computation scales like O(2V").



33

To obtain an efficient factorization sophisticated algorithms from graph theory
are needed. So far, we derive the factorization by the simple method used to prove
the main theorem. In this paper we have concentrated on FDA using exact factor-
izations. But we have numerically shown that FDA with approximate factorizations
is also an efficient optimization method. The next step will be to detect an appro-
priate factorization. In the theory of graphical models this is called learning the
model.

We do not want to give the impression that FDA should always be preferred
to UMDA or genetic algorithms. There has to be made a distinction between
the complezity of the structure of an ADF and the complezity of the optimization
problem. A complex structure does not necessarily imply a complex optimization
problem. For all structures there exist simple functions where the global optimum
is given simply by the sum of the optima of the functions f;. Such functions can
be easily optimized by algorithms not using the structure of the ADF.

Our main factorization theorem shows that all ADFs with a simple exact factor-
ization can be efficiently optimized by FDA. But FDA can also optimize efficiently
using approximate factorizations. This was shown with the 2-D spin system. Deter-
mining good approximate factorizations is an area of active research in the theory
of graphical models. FDA will profit from any progress concerning this problem.

Notes

1. Also with the Centre of Artificial Intelligence. ICIMAF. Cuba. ochoa@cidet.icmf.inf.cu

References

Aarts, E.H. & Korst, H.M. & van Laarhoven, P.J. (1997). Simulated Annealing. In Aarts,
E. & Lenstra, J.K. (Eds.),Local Search in Combinatorial Optimization. Chichester:Wiley
pp =121-136.

Baluja, S. & Davies, S. (1997). Using Optimal Dependency-Trees for Combinatorial
Optimization: Learning the Structure of the Search Space. Carnegie Mellon Report
CMU-CS-97-107.

De Bonet, J.S.& Isbell, Ch. L. & Viola, P. (1997). MIMIC: Finding Optima by Estimating
Probability Densities. In Mozer,M. & Jordan, M. & Petsche, Th. (Eds) Advances in Neural
Information Processing Systems 9

Dechter, R. & Dechter, A. & Pearl, J. (1990) Optimization in Constraint Networks Oliver
R.M. & Smith, J.Q. (Eds). Influence Diagrams, Belief Nets and Decision Analysis.
pp:411-426, New York:Wiley.

de la Maza, M. & Tidor, B. (1993). An analysis of Selection Procedures with Particular
Attention Paid to Proportional and Boltzmann Selection. In S. Forrest (Ed) Proc. of the
Fifth Int. Conf. on Genetic Algorithms pp:124-131, San Mateo, CA: Morgan Kaufman.
Forrest, S. & Mitchell, M. (1993). What Makes a Problem Hard for a Genetic Algorithm?
Some Anomalous Results and Their Explanation. Machine Learning, 13:285-319.

Frey, B.J. (1998). Graphical Models for Machine Learning and Digital Communication.
Cambridge: MIT Press.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.
Reading: Addison-Wesley.

Goldberg, D.E & Deb, K. & Kargupta, H. & Harik, G. (1993). Rapid, Accurate Optimization
of Difficult Problems Using Fast Messy Genetic Algorithms. In S. Forrest (Ed) Proc. of the



34

Fifth Int. Conf. on Genetic Algorithms pp:56-64, San Mateo, CA: Morgan Kaufman.
Holland, J. (1992). Adaptation in Natural And Artificial Systems. Cambridge:MIT Press.
Jordan, M. (1999). Learning in Graphical Models Cambridge:MIT Press.

Kargupta, H. & Goldberg, D.E. (1997). SEARCH, Blackbox Optimization, And Sample
Complexity. In R.K. Belew & M. Vose (Eds.) Foundations of Genetic Algorithms 4. San
Mateo, CA: Morgan Kaufman.

Kargupta, H. (1997). Revisiting The GEMGA: Scalable Evolutionary Optimization Through
Linkage Learning. Personal Communication.

Lauritzen, S.L. (1996) Graphical Models. Oxford:Clarendon Press.

Lawler, E.L. (1976) Combinatorial Optimization: Networks and Matroids. New York: Holt,
Rinehart and Winston.

Miihlenbein, H. & Schlierkamp-Voosen, D. (1993a). Predictive Models for the Breeder
Genetic Algorithm I. Continuous Parameter Optimization Ewvolutionary Computation, 1:pp.
25-49.

Miihlenbein, H. & Schlierkamp-Voosen, D. (1993b). The science of breeding and its
application to the breeder genetic algorithm. FEwvolutionary Computation, 1:pp. 335-360.
Miihlenbein, H. (1998). The Equation for Response to Selection and its Use for Prediction.
FEwvolutionary Computation, 5:pp. 303-346.

Miihlenbein, H. & Mahnig, Th.(1999a). Convergence Theory and Applications of the
Factorized Distribution Algorithm. to appear in Journal of Computing and Information
Technology.

Miihlenbein, H. & Mahnig, Th.(1999b). FDA - A scalable evolutionary algorithm for the
optimization of additively decomposed discrete functions. submitted for publication
Miihlenbein, H. & PaaB, G. (1996). From Recombination of Genes to the Estimation
of Distributions I. Binary Parameters. In Voigt, H.-M et al. (eds.)Lecture Notes in
Computer Science 1141: Parallel Problem Solving from Nature - PPSN IV, pp. 178-187,
Berlin:Springer.

Pelikan, M. & Miihlenbein, H. (1999). The Bivariate Marginal Distribution Algorithm,
In Roy, R. & Furuhashi, T. & Chawdhry, P. K. (eds.), Advances in Soft Computing -
Engineering Design and Manufacturing, pp. 521-535, Berlin:Springer-Verlag.

Tanese, R. (1989). Distributed genetic algorithms for function optimization. Unpublished
doctoral dissertation, University of Michigan, Ann Arbor.

Toulouse,G. (1977). Optimal graph matching for 2-D Ising models. Commun. Phys. 2:pp
115-119.

Whitley, D. & Beveridge, R. & Graves, C. & Mathias,K (1995). Test Driving Three 1995
Genetic Algorithms: New Test Functions and Geometric Matching. Journal of Heuristics,
1:77-104.



